dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Very Hard +

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Mon Jun 30, 2008 11:39 am    Post subject: Very Hard + Reply with quote

Since today's VH wasn't, here is an extra puzzle for you.
Code:
Puzzle: M4109527sh(15)
+-------+-------+-------+
| . 2 . | . . . | . 6 . |
| . 3 . | . 6 4 | . 5 . |
| . 5 6 | . 7 . | 3 4 . |
+-------+-------+-------+
| 5 . . | . 2 1 | . . 4 |
| 6 . . | 5 . 7 | . . 1 |
| . . . | 8 9 . | . . . |
+-------+-------+-------+
| . 9 7 | . 3 . | 4 1 . |
| . 6 . | . 8 5 | . 9 . |
| . 4 . | . . . | . 2 . |
+-------+-------+-------+
The Menneske rating still has me baffled. Usually I can solve this level with one or two advanced moves. This one took more.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Mon Jun 30, 2008 4:46 pm    Post subject: Reply with quote

1) After basics, there was an almost Type 6 UR with a strong link on each candidate, making two eliminations

2) W-Wing

3) XY-Chain
Back to top
View user's profile Send private message
Steve R



Joined: 24 Oct 2005
Posts: 289
Location: Birmingham, England

PostPosted: Mon Jun 30, 2008 6:30 pm    Post subject: Reply with quote

Code:
+-------------------------------------+
| 1479 2 148  | 139 5 38 | 18  6 789  |
| 179  3 18   | 129 6 4  | 128 5 2789 |
| 19   5 6    | 129 7 28 | 3   4 289  |
----------------------------------------
| 5    7 39   | 36  2 1  | 69   8 4   |
| 6    8 29   | 5   4 7  | 29   3 1   |
| 234  1 234  | 8   9 36 | 5    7 26  |
---------------------------------------
| 8    9 7    | 26  3 26 | 4    1 5   |
| 12   6 12   | 4   8 5  | 7    9 3   |
| 3    4 5    | 7   1 9  | 68   2 68  |
+-------------------------------------+

Following Marty, I looked for a UR. One is in r12c37.

Code:
+--------------------------------------+
| 1479 2 18+4 | 139 5 38 | 18+  6 789  |
| 179  3 18+  | 129 6 4  | 18+2 5 2789 |
| 19   5 6    | 129 7 28 | 3    4 289  |
----------------------------------------
| 5    7 39   | 36  2 1  | 69   8 4    |
| 6    8 29   | 5   4 7  | 29   3 1    |
| 24   1 234  | 8   9 36 | 5    7 26   |
----------------------------------------
| 8    9 7    | 26  3 26 | 4    1 5    |
| 12   6 12   | 4   8 5  | 7    9 3    |
| 3    4 5    | 7   1 9  | 68   2 68   |
+--------------------------------------+

As the two cells in the left-hand corners are conjugate with respect to 8, 8 may be eliminated from r3c7. Equally, those in the right-hand corners are conjugate with respect to 1 so this is eliminated from r1c3.

Code:
+---------------------------------------+
| 179+4 2 48  | 19+3 5 38 | 18  6 79+8  |
| 179+  3 18  | 129+ 6 4  | 12  5 279+8 |
| 19+   5 6   | 129+ 7 28 | 3   4 29+8  |
-----------------------------------------
| 5     7 39  | 36   2 1  | 69  8 4     |
| 6     8 29  | 5    4 7  | 29  3 1     |
| 24    1 234 | 8    9 36 | 5   7 26    |
-----------------------------------------
| 8     9 7   | 26   3 26 | 4   1 5     |
| 12    6 12  | 4    8 5  | 7   9 3     |
| 3     4 5   | 7    1 9  | 68  2 68    |
+---------------------------------------+

There is now a (1279) MUG in r123c149. If c9b3 contains 8, r1c7 must be 1. The only other possibility is that r1c14 contains 3 or 4. In this case a (348) locked set is formed with r1c36 and again r1c7 is 1. Placing 1 here solves the puzzle.

I’m beginning to wonder if MUGs are rather more common than first thought. Perhaps it is a matter of looking for them.

Steve
Back to top
View user's profile Send private message
cgordon



Joined: 04 May 2007
Posts: 769
Location: ontario, canada

PostPosted: Mon Jun 30, 2008 7:35 pm    Post subject: Reply with quote

Quote:
almost Type 6 UR


Marty: What is an ALMOST Type 6 UR? Sounds like almost pregnant?

I found a Type 4 UR with a diagonal variant.

Couldn't get no further.
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Mon Jun 30, 2008 9:04 pm    Post subject: Reply with quote

I, too, used that 18 UR, though in a different way: exploiting the 4=2 induced strong link. The grid (without the <3> in r6c1 as shown by Steve):
Code:
+---------------+------------+--------------+
| 1-479 2 a148  | 139  5  38 | 18   6  789  |
| 179   3  18   | 129  6  4  |b128  5 c2789 |
| 19    5  6    | 129  7  28 | 3    4 c289  |
+---------------+------------+--------------+
| 5     7  39   | 36   2  1  | 69   8  4    |
| 6     8  29   | 5    4  7  | 29   3  1    |
|e24    1  23-4 | 8    9  36 | 5    7 d26   |
+---------------+------------+--------------+
| 8     9  7    | 26   3  26 | 4    1  5    |
| 12    6  12   | 4    8  5  | 7    9  3    |
| 3     4  5    | 7    1  9  | 68   2  68   |
+---------------+------------+--------------+

The UR strong link, ab, is followed by the c9 grouped strong link, cd, and the bivalue strong link, e, to eliminate <4>s as shown. Or,
UR[(4)r1c3=(2)r2c7] - (2)r23c9=(2)r6c9 - (2=4)r6c1; r1c1|r6c3<>4

After that, a 6-cell XY-Chain finished things off.
Back to top
View user's profile Send private message Visit poster's website
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Mon Jun 30, 2008 9:13 pm    Post subject: Reply with quote

By the way, basic Medusa starting on <3>s leads to a Medusa Wrap in <8> and solves the puzzle in "one" step. It's always interesting to find a Medusa Wrap, I think.
Back to top
View user's profile Send private message Visit poster's website
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Mon Jun 30, 2008 9:14 pm    Post subject: Reply with quote

Quote:
Marty: What is an ALMOST Type 6 UR? Sounds like almost pregnant?

Craig, a Type 6 is with the bivalue cells on the diagonals and with one of the candidates being an X-Wing. When that occurs, each bivalue cell is solved with that X-Wing number.

The 18 cells in boxes 1 and 3 are diagonal, but there's no X-Wing, so I call it an "almost" Type 6 because the pattern is there.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Mon Jun 30, 2008 9:45 pm    Post subject: Reply with quote

Asellus wrote:
By the way, basic Medusa starting on <3>s leads to a Medusa Wrap in <8> and solves the puzzle in "one" step. It's always interesting to find a Medusa Wrap, I think.
I found a chain by Medusa coloring on <368>. Here it is:
Code:
+-------------+-------------+-------------+
| 79  2   4   | 139 5  3r8g | 18g 6   789 |
| 179 3   8   | 19  6   4   | 12  5   27  |
| 19  5   6   | 129 7   28  | 3   4   89  |
+-------------+-------------+-------------+
| 5   7   39  | 36  2   1   | 69  8   4   |
| 6   8   29  | 5   4   7   | 29  3   1   |
| 4   1   23  | 8   9  3g6r | 5   7   26g |
+-------------+-------------+-------------+
| 8   9   7   | 26  3   26  | 4   1   5   |
| 2   6   1   | 4   8   5   | 7   9   3   |
| 3   4   5   | 7   1   9   |6g8r 2   6r8 |
+-------------+-------------+-------------+
Starting in R1C6, the chain is in C6, R6, C9, R9, and C7, resulting in two <8g> in R1. r (red) must be true.

This is one chain I picked out of the Medusa net. Others are possible.

Keith
Back to top
View user's profile Send private message
cgordon



Joined: 04 May 2007
Posts: 769
Location: ontario, canada

PostPosted: Mon Jun 30, 2008 10:11 pm    Post subject: Reply with quote

Marty: Lost you there mate because I used the diagaonal variant of a Type 4 UR.
Code:
            
+-------+------+-------+   
| . .148| . . .|18 . . |
| . . 18| . . .|128. . |   
+-------+-------+------+

Thus - unless I am wrong - there are only two 1's in C7 so we can remove the 1 from <148>
And there are only two 8's in C3 ao we can remove 8 from <128>
------------------

Is that your type 6 UR?
I recently discussed this with Keith.

I still can't understand why a Type 5 UR is simply a minor diagonal variation of a Type 2 UR. Whereas the diagonal variant of the Type 4 UR is still a Type 4 - despite the fact that its resolution is radically different. You could of course argue that all all UR's have the same undelying logic. In which case - why bother with any Types.

Edited note: Sorry Marty - your post appeared after I posted mine.
I will read and digest.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Mon Jun 30, 2008 10:43 pm    Post subject: Reply with quote

cgordon wrote:
Marty: Lost you there mate because I used the diagaonal variant of a Type 4 UR.
Code:
            
+-------+------+-------+   
| . .148| . . .|18 . . |
| . . 18| . . .|128. . |   
+-------+-------+------+

Thus - unless I am wrong - there are only two 1's in C7 so we can remove the 1 from <148>
And there are only two 8's in C3 ao we can remove 8 from <128>
------------------

Is that your type 6 UR?
I recently discussed this with Keith.

I still can't understand why a Type 5 UR is simply a minor diagonal variation of a Type 2 UR. Whereas the diagonal variant of the Type 4 UR is still a Type 4 - despite the fact that its resolution is radically different. You could of course argue that all all UR's have the same undelying logic. In which case - why bother with any Types.

Sorry for the rant.
Craig,

Why don't you take a look at the classifications on Sudopedia,

http://www.sudopedia.org/wiki/Uniqueness_Test

and also those that are on Ruud's Sudocue (nightmare) site,

http://www.sudocue.net/guide.php#UR

Maybe we should rewrite the classifications!

Keith
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Tue Jul 01, 2008 5:32 am    Post subject: Reply with quote

Code:
.------------------.------------------.------------------.
| 1479  2     148  | 139   5     38   | 18    6     789  |
| 179   3     18   | 129   6     4    | 128   5     2789 |
| 19    5     6    | 129   7     28   | 3     4     289  |
:------------------+------------------+------------------:
| 5     7     39   | 36    2     1    | 69    8     4    |
| 6     8     29   | 5     4     7    | 29    3     1    |
| 24    1     234  | 8     9     36   | 5     7     26   |
:------------------+------------------+------------------:
| 8     9     7    | 26    3     26   | 4     1     5    |
| 12    6     12   | 4     8     5    | 7     9     3    |
| 3     4     5    | 7     1     9    | 68    2     68   |
'------------------'------------------'------------------'


we have had the URs and MUGs... how about a strictly chain method??
starting with this w-wing with extended pincers...
visually...



in notation...(2=6)r7c4-(6)r7c6=(6)r6c6-(6=2)r6c9-(2)r5c7=(2)r2c7; r2c4<>2
leads too...

Code:
.------------------.------------------.------------------.
| 1479  2     148  | 139   5     38   | 18    6     789  |
| 179   3     18   | 19    6     4    | 128   5     2789 |
| 19    5     6    | 129   7     28   | 3     4     89   |
:------------------+------------------+------------------:
| 5     7     39   | 36    2     1    | 69    8     4    |
| 6     8     29   | 5     4     7    | 29    3     1    |
| 24    1     234  | 8     9     36   | 5     7     26   |
:------------------+------------------+------------------:
| 8     9     7    | 26    3     26   | 4     1     5    |
| 12    6     12   | 4     8     5    | 7     9     3    |
| 3     4     5    | 7     1     9    | 68    2     68   |
'------------------'------------------'------------------'


xy-wing{1,8,9} removes 8 from r2c79 (ehem... 3 cell xy-chain)
xy-wing{1,8,9} removes 1 from r1c13" "

leads too...
Code:
.---------------.---------------.---------------.
| 79   2    4   | 139  5   #38  |#18   6    789 |
| 179  3    8   | 19   6    4   |#12   5   -279 |
| 19   5    6   | 129  7    28  | 3    4    89  |
:---------------+---------------+---------------:
| 5    7    39  | 36   2    1   | 69   8    4   |
| 6    8    29  | 5    4    7   | 29   3    1   |
| 4    1    23  | 8    9   #36  | 5    7   #26  |
:---------------+---------------+---------------:
| 8    9    7   | 26   3    26  | 4    1    5   |
| 2    6    1   | 4    8    5   | 7    9    3   |
| 3    4    5   | 7    1    9   | 68   2    68  |
'---------------'---------------'---------------'


the marked xy-chain eliminates the 2 from r2c9
{26}-{36}-{38}-{18}-{12}...done.
Back to top
View user's profile Send private message
cgordon



Joined: 04 May 2007
Posts: 769
Location: ontario, canada

PostPosted: Tue Jul 01, 2008 6:36 pm    Post subject: Reply with quote

Keith: I looked at the first of those references for UR's and am confused by the first example for Type 6 - since there appear to be strong links on all the rows and columns.

But regardless of this - is my assumption above correct? That is: are we OK with a diagonal Type 4 UR where there are only 2 of the UR pair candidates in a row or column.

Meanwhile, it looks like a Type 6 UR is (as Marty noted) a diagonal variant of a Type 4.

I would have come up with a more rational classification - but I have decided not to change it. Wink

Seems amazing how many times the Type 4's or 6's crop up.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group