View previous topic :: View next topic |
Author |
Message |
keith
Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
|
Posted: Sat Feb 28, 2009 8:14 pm Post subject: Free Press, February 27, 2009 |
|
|
Code: | Puzzle: FP022709
+-------+-------+-------+
| . . . | . 4 . | . . . |
| . . 3 | . 6 . | . 7 9 |
| . 7 . | . . . | 8 6 . |
+-------+-------+-------+
| 1 . . | . . 7 | . . . |
| 2 . . | . . . | 3 . 4 |
| . . . | 5 . . | . . 2 |
+-------+-------+-------+
| . 1 9 | . . . | . 2 . |
| . 8 2 | . 1 . | 9 . . |
| . . . | . 3 . | . . . |
+-------+-------+-------+ |
Quote: | I'd love to see a solution that does not use the UR!! | Keith |
|
Back to top |
|
|
storm_norm
Joined: 18 Oct 2007 Posts: 1741
|
Posted: Sat Feb 28, 2009 11:45 pm Post subject: |
|
|
Code: | .------------------.------------------.------------------.
| 689 69 168 | 7 4 39 | 2 35 135 |
| 5 2 3 | 18 6 18 | 4 7 9 |
| 49 7 14 | 29 5 239 | 8 6 13 |
:------------------+------------------+------------------:
| 1 U459 458 | 3 2 7 | 56 U589 568 |
| 2 U59 7 | 16 89 16 | 3 U589 4 |
| 689 3 68 | 5 89 4 | 7 1 2 |
:------------------+------------------+------------------:
| 346 1 9 | 468 7 568 | 56 2 356 |
| 3467 8 2 | 46 1 56 | 9 345 3567 |
| 467 -456 456 | 29 3 29 | 1 *48 678 |
'------------------'------------------'------------------' |
the UR on {5,9} r45c28 says that either the 4 is true in r4c2 or the 8's are true in r45c8. and the chain extends down to r9c8 (8=4) eliminates the 4 from r9c2.
like this...
UR59[(4)r4c2 = (8)r45c8] - (8=4)r9c8; r9c2 <> 4
Code: | .------------------.------------------.------------------.
| 689 69 168 | 7 4 39 | 2 35 135 |
| 5 2 3 | 18 6 18 | 4 7 9 |
|*49 7 *14 | 29 5 239 | 8 6 13 |
:------------------+------------------+------------------:
| 1 4 58 | 3 2 7 | 56 9 568 |
| 2 *59 7 | 16 89 16 | 3 58 4 |
|68-9 3 68 | 5 89 4 | 7 1 2 |
:------------------+------------------+------------------:
| 346 1 9 | 468 7 568 | 56 2 356 |
| 3467 8 2 | 46 1 56 | 9 345 3567 |
| 467 *56 *456 | 29 3 29 | 1 48 678 |
'------------------'------------------'------------------' |
the shortest chain I could find to finish it was...
(9=5)r5c2 - (5)r9c2 = (5-4)r9c3 = (4)r3c3 - (4=9)r3c1; r6c1 <> 9 |
|
Back to top |
|
|
Marty R.
Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
|
Posted: Sun Mar 01, 2009 12:15 am Post subject: |
|
|
Medusa solves it. So does the UR on 56. Either r4c9 = 8 or r7c9 = 3. Each possibility results in 6 & 8 in r4c7 and r4c9. |
|
Back to top |
|
|
Asellus
Joined: 05 Jun 2007 Posts: 865 Location: Sonoma County, CA, USA
|
Posted: Sun Mar 01, 2009 12:21 am Post subject: |
|
|
Keith,
I couldn't find a non-DP solution that didn't involve a chain. Without too much difficulty, I found an ALS chain that includes an ER:
(9)r1c12|r3c46 - (9=3)r1c6 - (3=5)r1c8 - ALS(5=8)r45c8 - (8=4)r9c8 - ER[(4)r9c123=(4)r789c1] - (4=9)r3c1 - (9)r1c12|r3c46; r1c12|r3c46<>9 |
|
Back to top |
|
|
keith
Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
|
Posted: Sun Mar 01, 2009 12:22 am Post subject: |
|
|
Norm,
The Type-1 23(9) UR in R39C46 blows it wide open.
If you do not use Uniqueness arguments, this is a very difficult puzzle!
Keith |
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Sun Mar 01, 2009 1:34 am Post subject: |
|
|
keith wrote: | If you do not use Uniqueness, this is a very difficult puzzle!
|
Code: | prior to UR Type 1
+--------------------------------------------------------------+
| 689 69 168 | 7 4 39 | 2 35 135 |
| 5 2 3 | 18 6 18 | 4 7 9 |
| 49 7 14 | 29 5 239 | 8 6 13 |
|--------------------+--------------------+--------------------|
| 1 459 458 | 3 2 7 | 56 589 568 |
| 2 59 7 | 16 89 16 | 3 589 4 |
| 689 3 68 | 5 89 4 | 7 1 2 |
|--------------------+--------------------+--------------------|
| 346 1 9 | 468 7 568 | 56 2 356 |
| 3467 8 2 | 46 1 56 | 9 345 3567 |
| 467 456 456 | 29 3 29 | 1 48 678 |
+--------------------------------------------------------------+
# 66 eliminations remain
(4=1)r3c3 - (1=3)r3c9 - (3)r1c8 = (3-4)r8c8 = (4)r9c8 => [r9c3]<>4
(4)r4c2 = (4)r4c3 - (4=1)r3c3 - (1=3)r3c9 - (3)r1c8 = (3-4)r8c8 = (4)r9c8 => [r9c2]<>4
______________________________________________________________________________________
|
|
|
Back to top |
|
|
storm_norm
Joined: 18 Oct 2007 Posts: 1741
|
Posted: Sun Mar 01, 2009 2:30 am Post subject: |
|
|
keith wrote: | Norm,
The Type-1 23(9) UR in R39C46 blows it wide open.
If you do not use Uniqueness arguments, this is a very difficult puzzle!
Keith |
keith, I did skip the type 1
as you proposed in your comment. |
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Sun Mar 01, 2009 5:53 pm Post subject: |
|
|
Code: | prior to UR Type 1
+--------------------------------------------------------------+
| 689 69 168 | 7 4 39 | 2 35 135 |
| 5 2 3 | 18 6 18 | 4 7 9 |
| @49 7 14 | 29 5 239 | 8 6 13 |
|--------------------+--------------------+--------------------|
| 1 459 458 | 3 2 7 | 56 589 568 |
| 2 59 7 | 16 89 16 | 3 589 4 |
| 689 3 68 | 5 89 4 | 7 1 2 |
|--------------------+--------------------+--------------------|
| *346 1 9 | *468 7 568 | 56 2 356 |
| *3467 8 2 | *46 1 56 | 9 *345 3567 |
| *467 56-4 56-4 | 29 3 29 | 1 *48 678 |
+--------------------------------------------------------------+
# 66 eliminations remain
|
How about Kraken Swordfish c148\r789 w/kraken cell [r3c1] (ala Mike Barker approach)?
Code: | 1a) Swordfish c148\r789 => [r9c23]<>4
1b) (4)r3c1 - (4=1)r3c3 - (1=3)r3c9 - (3)r1c8 = (3-4)r8c8 = (4)r9c8 => [r9c23]<>4
_________________________________________________________________________________
|
|
|
Back to top |
|
|
keith
Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
|
Posted: Sun Mar 01, 2009 6:47 pm Post subject: |
|
|
storm_norm wrote: | keith wrote: | Norm,
The Type-1 23(9) UR in R39C46 blows it wide open.
If you do not use Uniqueness arguments, this is a very difficult puzzle!
Keith |
keith, I did skip the type 1
as you proposed in your comment. |
Norm, you are correct. Sorry about that.
Keith |
|
Back to top |
|
|
|