dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Sept 8 VH

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Daily Sudoku puzzles
View previous topic :: View next topic  
Author Message
Earl



Joined: 30 May 2007
Posts: 677
Location: Victoria, KS

PostPosted: Tue Sep 08, 2009 2:02 am    Post subject: Sept 8 VH Reply with quote

This one flies on either wing.

Solutions: 278 xy-wing; or 267 xyz-wing.


Early Earl
Back to top
View user's profile Send private message Send e-mail
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Tue Sep 08, 2009 11:58 am    Post subject: Reply with quote

Another wing:
Quote:
w-wing 82
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Tue Sep 08, 2009 1:19 pm    Post subject: Reply with quote

Another one step solution is a
Quote:
xy-wing 16-8 with vertex 16 inr2c3 and pseudocell 68 in box 7.

Ted
Back to top
View user's profile Send private message
Earl



Joined: 30 May 2007
Posts: 677
Location: Victoria, KS

PostPosted: Tue Sep 08, 2009 2:38 pm    Post subject: Sept 8 VH Reply with quote

Ted,

Perhaps many would appreciate a step-by-step solution of your xy-wings with pseudocells.

Earl
Back to top
View user's profile Send private message Send e-mail
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Tue Sep 08, 2009 9:51 pm    Post subject: Re: Sept 8 VH Reply with quote

Earl wrote:
Ted,

Perhaps many would appreciate a step-by-step solution of your xy-wings with pseudocells.

Earl


Here is my code after basics.
Code:

*--------------------------------------------------------------------*
 | 18     258    129    | 4      3      6      | 7      129    1258   |
 | 4      568    16     | 9      2      7      | 58     3      158    |
 | 37     27     239    | 5      1      8      | 69     269    4      |
 |----------------------+----------------------+----------------------|
 | 6      3      8      | 2      9      4      | 1      5      7      |
 | 2      4      5      | 6      7      1      | 3      8      9      |
 | 9      1      7      | 3      8      5      | 2      4      6      |
 |----------------------+----------------------+----------------------|
 | 5      267    1236   | 8      4      29     | 69     12679  123    |
 | 78     9      26     | 1      5      3      | 4      267    28     |
 | 138    28     4      | 7      6      29     | 58     129    12358  |
 *--------------------------------------------------------------------*


The vertex or pivot of the xy-wing 16-8 is in r2c3, and pincer 18 is in r1c1. The second pincer, 68, is in box7 and is formed by the bivalue 26 in r8c3 and the bivalue 28 in r9c2. I believe that it was Keith who I first saw using the term pseudocell to identify the relationship between two bivalue cells containing a common digit, which is this case is the digit 2.

As for the xy-wing:
if the vertex r2c3=1, then pincer r1c1=8
if the vertex r2c3=6, then pseudocell pincer r8c3=2 and r9c2=8.
Thus, r12c2<>8 & r89c1<>8.

Alternatively, this configuration may be viewed as a 4-cell xy-chain:
(8=1)r1c1 - (1=6)r2c3 - (6=2)r8c3 - (2=8)r9c2.

Hope this helps clarify what I meant by "pseudocell". I am sure Keith or others could provide a better definition.

Ted
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Tue Sep 08, 2009 11:50 pm    Post subject: Reply with quote

Ted, that's very impressive.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Wed Sep 09, 2009 1:55 am    Post subject: Reply with quote

I first saw the term "pseudocell" used in terms of a UR, in particular a Type-3:
Code:
+-----------+-----------+-----------+
|  .  .  .  |  /  .  .  |  .  .  .  |
|  .  .  .  | 34  .  .  |  .  .  .  |
|  .  .  .  |  /  .  .  |  .  .  .  |
+-----------+-----------+-----------+
|  .  .  .  |  /  .  .  |  .  .  .  |
|  .  .  .  |  /  .  .  |  .  .  .  |
|  .  .  .  |  /  .  .  |  .  .  .  |
+-----------+-----------+-----------+
|  . 12  .  | 123 .  .  |  .  .  .  |
|  .  .  .  |  /  .  .  |  .  .  .  |
|  . 12  .  | 124 .  .  |  .  .  .  |
+-----------+-----------+-----------+

Either R7C4 is <3> or <R9C4> is <4>. To any cell that sees them both*, they act like a "pseudocell" <34>. So, with R2C4 the pseudocell forms a pair, and you can eliminate <34> in any cell marked /.

* Not quite. See below.

Suppose you have:
Code:
+-----------+-----------+-----------+
|  .  .  .  |  .  .  /  |  .  .  .  |
|  .  .  .  | 35  .  /  |  .  .  .  |
|  .  .  .  |  .  .  /  |  .  .  .  |
+-----------+-----------+-----------+
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  .  .  |  .  .  .  |  .  .  .  |
+-----------+-----------+-----------+
|  . 12  .  | 123 .  .  |  .  .  .  |
|  .  .  .  |  /  . 45  |  .  .  .  |
|  . 12  .  | 124 .  .  |  .  .  .  |
+-----------+-----------+-----------+

Now the pseudocell is acting like the pivot of an XY-wing 35 - 34 - 45 and you can eliminate <5> from any cell marked /.

About the time this came up, I started using the term "pseudocell" in looking for four-cell chains as an extension of the XY-wing idea. For example,
Code:
+-----------+-----------+-----------+
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  .  .  |  .  .  .  |  .  .  .  |
+-----------+-----------+-----------+
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  .  .  |  .  .  .  |  .  .  .  |
+-----------+-----------+-----------+
|  . 12  .  |  .  .  .  |  / 23  /  |
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  /  .  |  .  .  .  | 14  . 34  |
+-----------+-----------+-----------+

<14> and <34> are a pseudocell <13> making an XY-wing 12 - 23 - 13 that eliminates <1> in the cells marked /.

My idea of the pseudocell was simply that it is a way to "collapse' two cells XY - YZ into one, XZ, and I find it a useful device to find chains, especially four-cell chains.


*Below.

It is not necessary that adjacent links see BOTH cells of the pseudocell. Consider this variation of the previous example:
Code:
+-----------+-----------+-----------+
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  /  .  |  .  .  .  |  .  . 14  |
|  .  .  .  |  .  .  .  |  .  .  .  |
+-----------+-----------+-----------+
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  .  .  |  .  .  .  |  .  .  .  |
+-----------+-----------+-----------+
|  . 12  .  |  .  .  .  |  . 23  .  |
|  .  .  .  |  .  .  .  |  .  .  .  |
|  .  .  .  |  .  .  .  |  .  . 34  |
+-----------+-----------+-----------+

Neither <12> nor <14> sees both cells of the pseudocell in B9, <24>.

Best wishes,

Keith
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Wed Sep 09, 2009 2:10 am    Post subject: Re: Sept 8 VH Reply with quote

tlanglet wrote:
Earl wrote:
Ted,

Perhaps many would appreciate a step-by-step solution of your xy-wings with pseudocells.

Earl


Here is my code after basics.
Code:

*--------------------------------------------------------------------*
 | 18     258    129    | 4      3      6      | 7      129    1258   |
 | 4      568    16     | 9      2      7      | 58     3      158    |
 | 37     27     239    | 5      1      8      | 69     269    4      |
 |----------------------+----------------------+----------------------|
 | 6      3      8      | 2      9      4      | 1      5      7      |
 | 2      4      5      | 6      7      1      | 3      8      9      |
 | 9      1      7      | 3      8      5      | 2      4      6      |
 |----------------------+----------------------+----------------------|
 | 5      267    1236   | 8      4      29     | 69     12679  123    |
 | 78     9      26     | 1      5      3      | 4      267    28     |
 | 138    28     4      | 7      6      29     | 58     129    12358  |
 *--------------------------------------------------------------------*

Let me try to explain how I might have found this chain.

In C3 we have <16> and <26> that make a pseudocell (12). The question is, can we find two other cells so we have 1? - 12 - 2?, where ? is some candidate.
Note that 1? has to see the <1> in the pseudocell, 2? has to see the <2>.

By the way, any two adjacent cells in an XY chain can be regarded as a pseudocell. I am simply suggesting the idea is helpful to find short chains.

Best wishes,

Keith
Back to top
View user's profile Send private message
gindaani



Joined: 06 Mar 2009
Posts: 79

PostPosted: Wed Sep 09, 2009 10:13 pm    Post subject: Reply with quote

I would call that a pincer transport since the 8 was transported, but my definition of a pincer transport is more liberal than others. You could also call it pincer coloring.

You could also use the 28 at r9c2 to eliminate 8 from r12c2 and r9c1.
Edit: Nevermind, I thought you used the 28 in box 9, which also works.


Last edited by gindaani on Fri Sep 11, 2009 2:01 pm; edited 1 time in total
Back to top
View user's profile Send private message
Omari



Joined: 11 Sep 2009
Posts: 1

PostPosted: Fri Sep 11, 2009 12:49 pm    Post subject: Daily Sudoku puzzles Reply with quote

It is so entertaining puzzle to play,So keep playing and enjoy Sudoku.....
Thanks & Regards
Omari Johnson
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Daily Sudoku puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group