dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Puzzle NR 09/11/14 (B)

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj
View previous topic :: View next topic  
Author Message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sat Nov 14, 2009 7:16 pm    Post subject: Puzzle NR 09/11/14 (B) Reply with quote

Alert: XYZ-Wing present in my solver's solution.

Code:
 +-----------------------+
 | 2 . . | 3 6 . | . . . |
 | . 1 . | . 4 2 | . 6 . |
 | . . 3 | 1 . 7 | . . . |
 |-------+-------+-------|
 | 3 . 6 | . . 9 | 5 2 . |
 | 4 9 . | . . 5 | 6 3 . |
 | . 8 2 | 7 3 . | . 4 . |
 |-------+-------+-------|
 | . . . | 6 7 . | 4 . . |
 | . 3 . | 2 9 4 | . 1 . |
 | . . . | . . . | . . . |
 +-----------------------+

Play this puzzle online at the Daily Sudoku site
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Sun Nov 15, 2009 7:27 pm    Post subject: Reply with quote

Still another puzzle with various options. I used three fun steps:
xy-wing 7-89 with vertex in r9c8, which opens up a
chain found by extending the vertex of a potential xy-wing:
(5=3)r2c9 - (3=7)r2c7 - (7)r2c13 = (7)r1c3 - (7=5)r8c3; r8c9<>5 which opens a chain:
Code:
 *--------------------------------------------------*
 | 2    5    49   | 3    6    8    | 179  79   149  |
 | 8    1    7    | 9    4    2    | 3    6    5    |
 | 69   46   3    | 1    5    7    | 29   8    249  |
 |----------------+----------------+----------------|
 | 3    7    6    | 4    1    9    | 5    2    8    |
 | 4    9    1    | 8    2    5    | 6    3    7    |
 | 5    8    2    | 7    3    6    | 19   4    19   |
 |----------------+----------------+----------------|
 | 19   2    8    | 6    7    13   | 4    5    39   |
 | 7    3    5    | 2    9    4    | 8    1    6    |
 | 169  46   49   | 5    8    13   | 279  79   239  |
 *--------------------------------------------------*

Code:
                                      - (9)r9c9
                                   /                        \
(2=9)r3c7 - (9=7)r1c8 - (7=9)r9c8                               = (2)r9c9; r3c9, r9c7<>2
                                   \                        /
                                      - (9=3)r7c9 - (3)r9c9


Ted
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sun Nov 15, 2009 10:04 pm    Post subject: Reply with quote

tlanglet wrote:
... which opens a network:
Code:
 *--------------------------------------------------*
 | 2    5    49   | 3    6    8    | 179  79   149  |
 | 8    1    7    | 9    4    2    | 3    6    5    |
 | 69   46   3    | 1    5    7    | 29   8    249  |
 |----------------+----------------+----------------|
 | 3    7    6    | 4    1    9    | 5    2    8    |
 | 4    9    1    | 8    2    5    | 6    3    7    |
 | 5    8    2    | 7    3    6    | 19   4    19   |
 |----------------+----------------+----------------|
 | 19   2    8    | 6    7    13   | 4    5    39   |
 | 7    3    5    | 2    9    4    | 8    1    6    |
 | 169  46   49   | 5    8    13   | 279  79   239  |
 *--------------------------------------------------*

Code:
                                                  (9)r9c9
                                    /                     \
(2=9)r3c7 - (9=7)r1c8 - (7=9)r9c8 -                        = (2)r9c9; r3c9,r9c7<>2
                                    \                     /
                                      (9=3)r7c9 - (3)r9c9

__________________________________________________________________________________


Ted: Nice example of a SIN (Single Implication Network). I'm often amazed at how they make short work of difficult puzzles.

Recently, I became interested in an extension to the basic Eureka notation. It's called a "chain", but a lot of things are called chains now that I think are networks. If we take your cells and play them in this format, we get:

Code:
(2=9)r3c7 - (9=7)r1c8 - (7=9)r9c8 - (93=2)r79c9; r3c9,r9c7<>2

Suddenly, a network is a chain (in some people's eyes)!

Note: the (7=9)r9c8 - (93=2)r79c9 can be written as ALS[(7)r9c8 = (2)r9c9]r9c8,r79c9, but I've claimed ignorance of ALS usage for too long to admit that one exists here. Very Happy

[Edit: changed <39> to <93> so the linking digit was first.]


Last edited by daj95376 on Mon Nov 16, 2009 2:09 am; edited 3 times in total
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Sun Nov 15, 2009 10:55 pm    Post subject: Reply with quote

daj95376 wrote:

Recently, I became interested in an extension to the basic Eureka notation. It's called a "chain", but a lot of things are called chains now that I think are networks. If we take your cells and play them in this format, we get:

Code:
(2=9)r3c7 - (9=7)r1c8 - (7=9)r9c8 - (39=2)r79c9; r3c9,r9c7<>2

Suddenly, a network is a chain (in some people's eyes)!

Note: the (7=9)r9c8 - (39=2)r79c9 can be written as ALS[(7)r9c8 = (2)r9c9]r9c8,r79c9, but I've claimed ignorance of ALS usage for too long to admit that one exists here. Very Happy


I considered using the ALS but wanted to post the network since that was something I had not previously attempted. Your suggested notation is shorter and simpler, and to me it tells the story.

Also, I would be interested in reading about the Eureka extensions. Do you have a link to any postings on this topic?

Ted
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Nov 16, 2009 2:00 am    Post subject: Reply with quote

[Addendum: Sudopedia indicates that my chain above needed a slight adjustment. I updated my post so the 9s are next to each other.]

tlanglet wrote:
I considered using the ALS but wanted to post the network since that was something I had not previously attempted. Your suggested notation is shorter and simpler, and to me it tells the story.

Also, I would be interested in reading about the Eureka extensions. Do you have a link to any postings on this topic?

I wish!!! Here's an example of what's being done in the way of Eureka notation.

Code:
 +-----------------------------------------------------------------------+
 |  478    4789   1      |  28     3      248    |  6789   679    5      |
 |  3458   6      458    |  7      48     9      |  2      38     1      |
 |  2      3789   789    |  1      5      6      |  3789   79     4      |
 |-----------------------+-----------------------+-----------------------|
 |  578    35789  2      |  3589   1      578    |  38     4      6      |
 |  34568  34589  45689  |  35689  4689   458    |  1      2      7      |
 |  1      478    4678   |  2368   4678   2478   |  5      38     9      |
 |-----------------------+-----------------------+-----------------------|
 |  4567   457    3      |  569    2      57     |  679    1      8      |
 |  5678   2      5678   |  5689   6789   1      |  4      5679   3      |
 |  9      1      5678   |  4      678    3      |  67     567    2      |
 +-----------------------------------------------------------------------+
 # 110 eliminations remain

(NQ7468)r6c2358 = (NT578)r4c167 - (XW5)r45c24) = (QFXW5)r453c2.r4523c4 - (5=7)r7c6 => r6c6<>7
_____________________________________________________________________________________________

a) If there's not a <7468> naked quad in r6c2358, then there is a <578> naked triple in r4c167

b) This prevents an X-Wing for <5> in r45c24

c) at this point, I get lost ... and don't want to know even if someone were to explain it!

As for that r6c6<>7 elimination ...

Code:
(75=8)r47c6 - r4c7 =      r6c8 - (8=467)r6c235       => r6c6<>7   -or-
(75=8)r47c6 - r4c7 = (8-3)r6c8 = (3-2)r6c4 = (2)r6c6 => r6c6<>7

... which I derived by simply rewriting a short SIN that my solver found.

[Addendum] Alternately, I see it as a network based on the candidates in r4c6:

Code:
(5)r4c6 - (5=7)r7c6 -                    (  7)r6c6
||
(7)r4c6 -                                (  7)r6c6
||
(8)r4c6 - r4c7 = (8-3)r6c8 = (3-2)r6c4 = (2-7)r6c6


A friend suggests an ALS-XY:

Code:
r6c6 -7- als:r6c2358 -3- r4c7 -8- als:r47c6 -7- r6c6 --> r6c6<>7


Sheez: So many typos to correct!


Last edited by daj95376 on Mon Nov 16, 2009 10:03 am; edited 4 times in total
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Mon Nov 16, 2009 5:35 am    Post subject: Reply with quote

I used:

XY (798)
XYZ (578)
X (9)
XY (279)

Alternatively, a BUG+1 was available in lieu of the last XY.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Nov 16, 2009 9:13 am    Post subject: Reply with quote

My solver found an extraneous X-Wing (5) initially; otherwise, it's solution matches Marty's.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group