dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Vanhegan

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Wed Nov 10, 2010 6:17 pm    Post subject: Vanhegan Reply with quote

Fiendish, 5-877276, rated 2.2.0.1

I normally easily solve puzzles in this rating range, but I'm hopelessly stuck here after a Finned X-Wing and chain, both of which didn't make a dent.

Code:

+-------------+-------+---------+
| 4 6    3    | 9 5 7 | 18 18 2 |
| 2 57   57   | 1 8 3 | 49 49 6 |
| 8 1    9    | 2 6 4 | 3  5  7 |
+-------------+-------+---------+
| 1 24   46   | 5 3 9 | 67 27 8 |
| 7 289  28   | 6 4 1 | 29 3  5 |
| 3 59   56   | 8 7 2 | 16 19 4 |
+-------------+-------+---------+
| 5 3    24   | 7 1 8 | 24 6  9 |
| 9 78   1    | 4 2 6 | 5  78 3 |
| 6 2478 2478 | 3 9 5 | 78 24 1 |
+-------------+-------+---------+

Play this puzzle online at the Daily Sudoku site
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Wed Nov 10, 2010 8:51 pm    Post subject: Reply with quote

There's an xy-chain - I couldn't see any wings etc.
Code:
(7=5)r2c3 - (5=6)r6c3 - (6=1)r6c7 - (1=8)r1c7 - (8=7)r9c7 ; r9c3<>7
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Wed Nov 10, 2010 10:02 pm    Post subject: Reply with quote

peterj wrote:
There's an xy-chain - I couldn't see any wings etc.
Code:
(7=5)r2c3 - (5=6)r6c3 - (6=1)r6c7 - (1=8)r1c7 - (8=7)r9c7 ; r9c3<>7

Thanks, that's all it needed.

Is there a good way to look for potentially helpful chains? All I can do is pretty much try to find them by testing, basically a trial-and-error way of finding them.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Wed Nov 10, 2010 10:57 pm    Post subject: Reply with quote

This puzzle probably has an interesting DP, but I can't find it. However, what I did find seems interesting.

Code:
 (2)r5c2 = HP(24-78)r49c2 = HP(78-24)b7q59 ; BUG contradiction!  =>  r5c2=2
 +--------------------------------------------------------------+
 |  4     6     3     |  9     5     7     |  18    18    2     |
 |  2     57    57    |  1     8     3     |  49    49    6     |
 |  8     1     9     |  2     6     4     |  3     5     7     |
 |--------------------+--------------------+--------------------|
 |  1     24    46    |  5     3     9     |  67    27    8     |
 |  7     289   28    |  6     4     1     |  29    3     5     |
 |  3     59    56    |  8     7     2     |  16    19    4     |
 |--------------------+--------------------+--------------------|
 |  5     3     24    |  7     1     8     |  24    6     9     |
 |  9     78    1     |  4     2     6     |  5     78    3     |
 |  6     2478  2478  |  3     9     5     |  78    24    1     |
 +--------------------------------------------------------------+
 # 30 eliminations remain
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Wed Nov 10, 2010 11:26 pm    Post subject: Reply with quote

Danny, I am relatively new to this - but have not seen a move like this Exclamation (I had to step through in SS to understand the logic!) I looked quickly at a BUG+3 scenario but convinced myself that a BUG situation did not exist - interesting that your move relies on a contradiction that would create a BUG.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Thu Nov 11, 2010 1:48 am    Post subject: Reply with quote

Peter: This was a totally new approach for me. As I said, I was looking really hard for a DP. I noticed a strange pattern existed if I forced r9c3=78. I tried to turn it into a DP, but failed.

Occassionally, I'd also look at r5c2 in conjunction with r9c23. I kept running into a wall because the latter cells had four candidates and I couldn't remember how they could be used in a BUG scenario. So, I decided to see which candidates I could remove and create a BUG. I started with r5c2<>2, and the HP() relationships jumped out at me. I nearly fell out of my chair!

Regards, Danny
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Thu Nov 11, 2010 2:37 pm    Post subject: Reply with quote

I just read the posts and need to review them but here is a two step solution using a AUR and a BUG+1.

AUR(28)r59c23 internal SIS r5c2=9,r9c23=4,r9c23=7; r5c3=8
(9)r5c2-(8)r5c2=(8)r5c3;
||
(4)r9c23-(4=2)r7c3-(2=8)r5c3;
||
(7)r9c23-(7=8)r8c2-r5c2=(8)r5c3;

BUG+1; r9c2=7

Ted
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Thu Nov 11, 2010 4:06 pm    Post subject: Reply with quote

Ted: when I (originally) tried the <28> UR, I ended up with:

Code:
 *--------------------------------------------------*
 | 4    6    3    | 9    5    7    | 18   18   2    |
 | 2    57   57   | 1    8    3    | 49   49   6    |
 | 8    1    9    | 2    6    4    | 3    5    7    |
 |----------------+----------------+----------------|
 | 1    24   46   | 5    3    9    | 67   27   8    |
 | 7    29   8    | 6    4    1    | 29   3    5    |
 | 3    59   56   | 8    7    2    | 16   19   4    |
 |----------------+----------------+----------------|
 | 5    3    24   | 7    1    8    | 24   6    9    |
 | 9    78   1    | 4    2    6    | 5    78   3    |
 | 6    48+7 27+4 | 3    9    5    | 78   24   1    |
 *--------------------------------------------------*


And just now realized that I could derive: r9c2<>4 & r9c3<>7
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Thu Nov 11, 2010 7:49 pm    Post subject: Reply with quote

Marty R. wrote:
Is there a good way to look for potentially helpful chains? All I can do is pretty much try to find them by testing, basically a trial-and-error way of finding them.

Ultimately for me it's pretty much trial-and-error - but I try to shortcut the process a little bit by making it more "victim" driven than chain driven i.e. think about what I want to achieve rather than just randomly follow bivalues.
1) pick a digit that is in the right sort of pattern - not a single x-wing pattern, not dozens of them everywhere
2) pick a victim cell that will be productive - a bivalue, a bilocal etc.
3) pick the pincers that would eliminate it
4) try to make a chain...
rinse - repeat
So trial and error - but directed trial and error Exclamation
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Nov 12, 2010 12:06 am    Post subject: Reply with quote

Thanks Peter, I'll try and make my method more efficient. Besides, DT&E sounds a lot better than T&E. Laughing
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group