dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Puzzle 11/06/05: ~ XY

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj
View previous topic :: View next topic  
Author Message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sun Jun 05, 2011 4:09 pm    Post subject: Puzzle 11/06/05: ~ XY Reply with quote

Code:
 +-----------------------+
 | 8 . 6 | 4 . 9 | . . . |
 | . 5 . | 6 . . | . . . |
 | 2 . 7 | . . . | . . . |
 |-------+-------+-------|
 | . 9 . | 5 . . | . . . |
 | . . . | 9 7 . | 1 . . |
 | 1 . . | 8 . 3 | . 7 . |
 |-------+-------+-------|
 | 9 . . | . 6 . | 8 . 7 |
 | . . . | . . 8 | . 1 . |
 | . . . | . . . | 6 . 5 |
 +-----------------------+

Play this puzzle online at the Daily Sudoku site
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Mon Jun 06, 2011 2:49 pm    Post subject: Reply with quote

I stumbled into a nice chain while looking for xy-wings............

(3=4)r9c1-(4=1)r9c6-r3c6=(1-3)r3c4=(3)r123c5; r9c5<>3=9

Ted
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Mon Jun 06, 2011 3:58 pm    Post subject: Reply with quote

An alternative to Ted's chain (which to me looks like an m-wing with a r9 3=1) is this xy-chain...
Quote:
(1=3)r3c4 - (3=4)r3c2 - (4=3)r2c1 - (3=4)r9c1 - (4=1)r9c6 ; r3c6<>1, r79c4<>1
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Jun 06, 2011 5:32 pm    Post subject: Reply with quote

Code:
 after basics
 +--------------------------------------------------------------------------------+
 |  8       1       6       |  4       235     9       |  7       235     23      |
 |  34      5       9       |  6       238     7       |  234     2348    1       |
 |  2       34      7       |  13      358     15      |  3459    345689  34689   |
 |--------------------------+--------------------------+--------------------------|
 |  7       9       348     |  5       1       26      |  234     23468   23468   |
 |  56      348     348     |  9       7       26      |  1       234568  23468   |
 |  1       26      25      |  8       4       3       |  59      7       69      |
 |--------------------------+--------------------------+--------------------------|
 |  9       234     12345   |  123     6       145     |  8       234     7       |
 |  56      23467   2345    |  237     359     8       |  2349    1       2349    |
 |  34      23478   12348   |  1237    39      14      |  6       2349    5       |
 +--------------------------------------------------------------------------------+
 # 109 eliminations remain

This puzzle is interesting because it only has a single XY-Chain, which cracks the puzzle (as peterj discovered).

It also has 2x (nearly identical) M-Wing that crack the puzzle:

Code:
M-Wing 2B: (1=5)r3c6 - r7c6 = (5-1)r7c3 = (1)r9c3   =>  r9c6<>1
M-Wing 3B: (1=5)r3c6 - r7c6 = (5-1)r7c3 = (1)r7c46  =>  r9c6<>1

After that, an extraneous XYZ-Wing still needs a chain to crack the puzzle (like Ted used).
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Tue Jun 07, 2011 4:33 am    Post subject: Reply with quote

The XY-Chain is also what I call an XY-Wing Chain or what others call an Extended XY-Wing, 13-34-34-34-14, where the three 34 cells act as the one pivot cell in an XY-Wing.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group