dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

DB Saturday Puzzle: September 15, 2007

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Sep 15, 2007 11:40 am    Post subject: DB Saturday Puzzle: September 15, 2007 Reply with quote

I have not yet completed it ...
Code:
Puzzle: DB091507  ******
+-------+-------+-------+
| . . . | . . . | . 5 . |
| . 2 7 | . . . | 3 . 4 |
| . 5 . | . . 3 | 1 9 7 |
+-------+-------+-------+
| . . 1 | 2 . 4 | . . . |
| 4 7 . | . . . | . 2 8 |
| . . . | 8 . 9 | 7 . . |
+-------+-------+-------+
| 5 4 6 | 3 . . | . 1 . |
| 7 . 3 | . . . | 5 6 . |
| . 9 . | . . . | . . . |
+-------+-------+-------+
Keith
Back to top
View user's profile Send private message
Earl



Joined: 30 May 2007
Posts: 677
Location: Victoria, KS

PostPosted: Sat Sep 15, 2007 3:12 pm    Post subject: DB Saturday Sept 15 Reply with quote

I's stuck here. Help!

Earl


*-----------------------------------------------------------*
| 139 13 49 | 7 148 18 | 2 5 6 |
| 16 2 7 | 9 156 156 | 3 8 4 |
| 68 5 48 | 46 2 3 | 1 9 7 |
|-------------------+-------------------+-------------------|
| 89 68 1 | 2 7 4 | 69 3 5 |
| 4 7 59 | 156 3 156 | 69 2 8 |
| 23 36 25 | 8 56 9 | 7 4 1 |
|-------------------+-------------------+-------------------|
| 5 4 6 | 3 9 7 | 8 1 2 |
| 7 18 3 | 14 148 2 | 5 6 9 |
| 12 9 28 | 156 1568 1568 | 4 7 3 |
*-----------------------------------------------------------*
Back to top
View user's profile Send private message Send e-mail
TKiel



Joined: 22 Feb 2006
Posts: 292
Location: Kalamazoo, MI

PostPosted: Sat Sep 15, 2007 3:58 pm    Post subject: Reply with quote

From earl's position there is an extended XY-wing with <13> pivot in r1c2 that excludes 8 from r4c1.

(Edit: Sorry about the wrong cell reference.)


Last edited by TKiel on Sat Sep 15, 2007 10:26 pm; edited 3 times in total
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Sep 15, 2007 4:00 pm    Post subject: Reply with quote

Earl's grid:

Code:
---------------------------------------
| 139 13  49 | 7   148  18   | 2  5 6 |
| 16  2   7  | 9   156  156  | 3  8 4 |
| 68  5   48 | 46  2    3    | 1  9 7 |
|--------------------------------------
| 89  68  1  | 2   7    4    | 69 3 5 |
| 4   7   59 | 156 3    156  | 69 2 8 |
| 23  36  25 | 8   56   9    | 7  4 1 |
|-------------------------------------
| 5   4   6  | 3   9    7    | 8  1 2 |
| 7   18  3  | 14  148  2    | 5  6 9 |
| 12  9   28 | 156 1568 1568 | 4  7 3 |
---------------------------------------


Two XY-Chains and a W-Wing did it for me.

Quote:
From earls; position there is an extended XY-wing (<13> pivot in r1c3 that excludes 8 from r4c1


Tracy, I guess you mean r1c2. I'm not seeing how an extension works here.
Back to top
View user's profile Send private message
Johan



Joined: 25 Jun 2007
Posts: 206
Location: Bornem Belgium

PostPosted: Sat Sep 15, 2007 5:21 pm    Post subject: Reply with quote

From Earl's grid there is a 5-cell xy-chain that eliminates <8> in R4C1
Back to top
View user's profile Send private message Send e-mail
TKiel



Joined: 22 Feb 2006
Posts: 292
Location: Kalamazoo, MI

PostPosted: Sat Sep 15, 2007 9:25 pm    Post subject: Reply with quote

XY-wing with pivot in r1c2 <13>, pincers at r2c1 <16> and r6c2 <36>. R2c1 extends to r3c1 <68>, r6c2 extends to r4c2 <68>. Probably same XY-chain used by Johan.
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Sep 15, 2007 10:04 pm    Post subject: Reply with quote

TKiel wrote:
XY-wing with pivot in r1c2 <13>, pincers at r2c1 <16> and r6c2 <36>. R2c1 extends to r3c1 <68>, r6c2 extends to r4c2 <68>. Probably same XY-chain used by Johan.


In my perpetual state of confusion, I confused Extended XY-Wing with that thing you posted about a couple of days ago, which I seem to recall was an XY-Wing and you called it W-Wing with Coloring, or something like that, but it involved a three-cell chain starting with one of the pincer cells.
Back to top
View user's profile Send private message
Ruud



Joined: 18 Jan 2006
Posts: 31

PostPosted: Sat Sep 15, 2007 10:28 pm    Post subject: Reply with quote

It would be interesting to know how earl eliminated 8 from r9c1. The best move I could find is a Sue-De-Coq on box 1 and column 1. A rare, but beautiful move.

Ruud
Back to top
View user's profile Send private message Visit poster's website
Johan



Joined: 25 Jun 2007
Posts: 206
Location: Bornem Belgium

PostPosted: Sat Sep 15, 2007 10:35 pm    Post subject: Reply with quote

The 5-cell xy-chain could also be defined like Tracy said as an extended xy-wing.
But you can also define the xy-wing as a short 3-cell xy-chain, either both ways uses the pincer-cells effect, to eliminate a candidate that can be seen by both cells.

The 5-cell xy-chain, which erases <8> in R4C1, starting with <6> in R3C1.

[86][61][13][36][68]





Code:
+-----------+---------------+--------+
|139 C13 49 | 7   148  18   | 2  5 6 |
|B16  2  7  | 9   156  156  | 3  8 4 |
|A68  5  48 | 46  2    3    | 1  9 7 |
+-----------+---------------+--------+
|-89 E68 1  | 2   7    4    | 69 3 5 |
| 4   7  59 | 156 3    156  | 69 2 8 |
| 23 D36 25 | 8   56   9    | 7  4 1 |
+-----------+---------------+--------+
| 5   4  6  | 3   9    7    | 8  1 2 |
| 7   18 3  | 14  148  2    | 5  6 9 |
| 128 9  28 | 156 1568 1568 | 4  7 3 |
+-----------+---------------+--------+

Back to top
View user's profile Send private message Send e-mail
TKiel



Joined: 22 Feb 2006
Posts: 292
Location: Kalamazoo, MI

PostPosted: Sat Sep 15, 2007 10:43 pm    Post subject: Reply with quote

Ruud,

I'm not sure how earl did it, but there is a lowly old XY-chain that does it.

<82><25><56><63><31><18> (forgive my improper notation).
Back to top
View user's profile Send private message
Earl



Joined: 30 May 2007
Posts: 677
Location: Victoria, KS

PostPosted: Sun Sep 16, 2007 1:20 am    Post subject: DB puzzle Sept 15 Reply with quote

I used the (8) pincers of R3C1 and R8C2 (by an xy-chain 1-4-6-8) to eliminate 8 from R9C1. But I failed to see the xy-chain from R3C1 to R4C2 (6-1-3-6-8) that eliminates 8 from R4C1 and solves the puzzle.

Earl

(Edited by keith to disable smilies)
Back to top
View user's profile Send private message Send e-mail
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sun Sep 16, 2007 8:39 pm    Post subject: What is this called? Reply with quote

I've been away for the weekend, driving by Tracy's town, to Chicago and back. I apologize if this has been covered. This is the pinch point:
Code:
+----------------+----------------+----------------+
| 139  13   49   | 7    148  18   | 2    5    6    |
| 16   2    7    | 9    156  156  | 3    8    4    |
| 68   5    48   | 46   2    3    | 1    9    7    |
+----------------+----------------+----------------+
| 89   68   1    | 2    7    4    | 69   3    5    |
| 4    7    59   | 156  3    156  | 69   2    8    |
| 23   36   25   | 8    56   9    | 7    4    1    |
+----------------+----------------+----------------+
| 5    4    6    | 3    9    7    | 8    1    2    |
| 7    18   3    | 14   148  2    | 5    6    9    |
| 128  9    28   | 156  1568 1568 | 4    7    3    |
+----------------+----------------+----------------+
The shortest chain seems to be in the rectangle R18C25. Sudoku Susser says:
Code:
Found a 4-link Comprehensive Chain.  If we assume that square R1C5 is <1> then we can make the following chain of conclusions:

   R8C5 must be <4> (C5 pin), which means that
   R8C2 must be <8> (R8 pin), which means that
   R1C2 must be <1> (C2 pin), which means that
   R1C5 can't be <1> (buddy contradiction).

Since this is logically inconsistent, R1C5 cannot be <1>.
What would you experts call this chain?

Keith
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Mon Sep 17, 2007 12:50 am    Post subject: Reply with quote

I'd call it an AIC (Alternate Implication Chain) that uses end-to-end strong ("conjugate") links. In Eureka notation it can be written:

[1-4]R1C5=[4-8]R8C5=[8-1]R8C2=[1]R1C2-[1]R1C5; R1C5<>1

The three links are 4=4 in C5, 8=8 in R8, and 1=1 in C2.
Back to top
View user's profile Send private message Visit poster's website
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Mon Sep 17, 2007 1:08 am    Post subject: Reply with quote

Medusa coloring easily produces an interesting result with Keith's grid:
Code:
+-----------------+----------------+----------------+
|#13r9r 1r3g 49   | 7    148  18   | 2    5    6    |
| 16    2    7    | 9    156  156  | 3    8    4    |
| 68    5    48   | 46   2    3    | 1    9    7    |
+-----------------+----------------+----------------+
| 8r9g  6r8g 1    | 2    7    4    | 69   3    5    |
| 4     7    59   | 156  3    156  | 69   2    8    |
| 23    3r6g 25   | 8    56   9    | 7    4    1    |
+-----------------+----------------+----------------+
| 5     4    6    | 3    9    7    | 8    1    2    |
| 7     18   3    | 14   148  2    | 5    6    9    |
| 128   9    28   | 156  1568 1568 | 4    7    3    |
+-----------------+----------------+----------------+

We quickly get two "red" values in R1C1, which is not possible. So all the "r" values are eliminated (a "Medusa Wrap") and the puzzle is solved.
Back to top
View user's profile Send private message Visit poster's website
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group