dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Puzzle NR 09/11/18 (XYZ)

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj
View previous topic :: View next topic  
Author Message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Wed Nov 18, 2009 11:24 am    Post subject: Puzzle NR 09/11/18 (XYZ) Reply with quote

Alert: XYZ-Wing present in my solver's solution.

Code:
 +-----------------------+
 | . . . | 9 . . | . 7 6 |
 | . . 9 | 8 6 . | . 2 . |
 | . 6 . | . 2 . | . . . |
 |-------+-------+-------|
 | 1 8 . | 6 3 . | 7 . . |
 | . 9 7 | 5 . . | . . 8 |
 | . . . | . . . | . . 1 |
 |-------+-------+-------|
 | . . . | 2 . . | 8 . . |
 | 9 2 . | . . . | . 5 7 |
 | 8 . . | . 5 6 | . 3 9 |
 +-----------------------+

Play this puzzle online at the Daily Sudoku site
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Wed Nov 18, 2009 4:48 pm    Post subject: Reply with quote

What is the significance of mentioning the presence of the XYZ?
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Wed Nov 18, 2009 5:19 pm    Post subject: Reply with quote

Marty R. wrote:
What is the significance of mentioning the presence of the XYZ?

All too often, without the alert, the presence of an XYZ-Wing is missed by those solving the puzzle and they go through all sorts of gyrations coming up with an alternative -- like Medusa coloring. I wanted to reduce the discomfort by letting everyone know that finding the XYZ-Wing might help them in getting past a bottleneck. You're certainly free to ignore the alert!

Also, it supports my claim that I created an NR puzzle and not a more complex puzzle!!!

The good news is that I only have five more puzzles with XYZ-Wing present in my solver's solutions.

Regards, Danny
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Wed Nov 18, 2009 6:06 pm    Post subject: Reply with quote

Thanks for the response, even though I don't understand.

Quote:
All too often, without the alert, the presence of an XYZ-Wing is missed by those solving the puzzle and they go through all sorts of gyrations coming up with an alternative -- like Medusa coloring. I wanted to reduce the discomfort by letting everyone know that finding the XYZ-Wing might help them in getting past a bottleneck.

What's different about an XYZ-Wing from XY, W, Kite UR, etc?

Quote:
The good news is that I only have five more puzzles with XYZ-Wing present in my solver's solutions.

I don't know why that's "good" news. I like XYZ-Wings. But that's OK, no need to respond further, you've got better uses for your time.
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Wed Nov 18, 2009 8:04 pm    Post subject: Reply with quote

Code:
+-------------------+-----------------+-------------+
| 2     35      8   | 9      4   35   | 1  7     6  |
| 357   1357    9   | 8      6   1357 | 4  2     35 |
| 3457  6       134 | 13-7   2   1357 | 9  8     35 |
+-------------------+-----------------+-------------+
| 1     8       5   | 6      3   49   | 7  49    2  |
| 46    9       7   | 5      1   2    | 3  46    8  |
| 36-4  3(4)    2   | (47)   79  8    | 5  69-4  1  |
+-------------------+-----------------+-------------+
| 357   357     6   | 2      79  379  | 8  1     4  |
| 9     2       134 | 134    8   134  | 6  5     7  |
| 8     -1(47)  14  | 14(7)  5   6    | 2  3     9  |
+-------------------+-----------------+-------------+

Step #1...m-wing loop: (4=7)r6c4 - (7)r9c4 = (7-4)r9c2 = (4)r6c2; r6c1 and r6c8 <> 4,
r3c4 <> 7

Code:
+-----------------+---------------+-----------+
| 2     5(3)  8   | 9    4   5(3) | 1  7   6  |
| 357   1     9   | 8    6   357  | 4  2   35 |
| 3457  6     34  | 13   2   1357 | 9  8   35 |
+-----------------+---------------+-----------+
| 1     8     5   | 6    3   (49) | 7  49  2  |
| 46    9     7   | 5    1   2    | 3  46  8  |
| 36    (34)  2   | 7-4  79  8    | 5  69  1  |
+-----------------+---------------+-----------+
| 35    357   6   | 2    79  (39) | 8  1   4  |
| 9     2     134 | 134  8   134  | 6  5   7  |
| 8     47    14  | 147  5   6    | 2  3   9  |
+-----------------+---------------+-----------+

Step #2...(4=3)r6c2 - (3)r1c2 = (3)r1c6 - (3=9)r7c6 - (9=4)r4c6; r6c4 <> 4
----
or you can combine the two for a one stepper if you notice this string of inferences from step #1...
(7)r9c4 = (7-4)r9c2 = (4)r6c2

Code:
+------------------+-----------------+------------+
| 2     35     8   | 9      4   35   | 1  7    6  |
| 357   1357   9   | 8      6   1357 | 4  2    35 |
| 3457  6      134 | 137    2   1357 | 9  8    35 |
+------------------+-----------------+------------+
| 1     8      5   | 6      3   49   | 7  49   2  |
| 46    9      7   | 5      1   2    | 3  46   8  |
| 346   3(4)   2   | 47     79  8    | 5  469  1  |
+------------------+-----------------+------------+
| 357   357    6   | 2      79  379  | 8  1    4  |
| 9     2      134 | 134    8   134  | 6  5    7  |
| 8     1(47)  14  | 14(7)  5   6    | 2  3    9  |
+------------------+-----------------+------------+

notice how this string of inferences is weakly linked to the 7 in r7c6.
IOW, if the chain in step #2 is false...
[(4=3)r6c2 - (3)r1c2 = (3)r1c6 - (3=9)r7c6 - (9=4)r4c6]
then the 7 in r7c6 is true... leads too...
(7)r7c6 - (7)r9c4 = (7-4)r9c2 = (4)r6c2

and either way, the 4 in r6c4 is eliminated.

Code:
+------------------+------------------+------------+
| 2     5(3)   8   | 9      4   5(3)  | 1  7    6  |
| 357   1357   9   | 8      6   1357  | 4  2    35 |
| 3457  6      134 | 137    2   1357  | 9  8    35 |
+------------------+------------------+------------+
| 1     8      5   | 6      3   (49)  | 7  49   2  |
| 46    9      7   | 5      1   2     | 3  46   8  |
| 346   (34)   2   | 7-4    79  8     | 5  469  1  |
+------------------+------------------+------------+
| 357   357    6   | 2      79  (379) | 8  1    4  |
| 9     2      134 | 134    8   134   | 6  5    7  |
| 8     1(47)  14  | 14(7)  5   6     | 2  3    9  |
+------------------+------------------+------------+

so we get this branched chain
[(4=3)r6c2 - (3)r1c2 = (3)r1c6 - (3=9)r7c6 - (9=4)r4c6] = (7)r7c6 - (7)r9c4 = (7-4)r9c2 = (4)r6c2; r6c4 <> 4
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Wed Nov 18, 2009 10:43 pm    Post subject: Reply with quote

I found a couple of different solutions for this puzzle; both were five steps. The one without the xyz-wing is:
x-wing 3,
UR 46,
w-wing 47,
useless xy-wing 1-47 with pincer transports
w-wing 35

I tried for some time to take advantage of the potential 6-cell DP 35 in boxes 1, 2 & 3 but could not find a deletion. Did anyone else pursue this possibility?

Ted
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Thu Nov 19, 2009 12:20 am    Post subject: Reply with quote

tlanglet wrote:
I found a couple of different solutions for this puzzle; both were five steps. The one without the xyz-wing is:
x-wing 3,
UR 46,
w-wing 47,
useless xy-wing 1-47 with pincer transports
w-wing 35

I tried for some time to take advantage of the potential 6-cell DP 35 in boxes 1, 2 & 3 but could not find a deletion. Did anyone else pursue this possibility?

Ted


do you mean in boxes 1,2,3 and columns 1, 6 and 9?
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Thu Nov 19, 2009 2:19 am    Post subject: Reply with quote

storm_norm wrote:
tlanglet wrote:


I tried for some time to take advantage of the potential 6-cell DP 35 in boxes 1, 2 & 3 but could not find a deletion. Did anyone else pursue this possibility?

Ted


do you mean in boxes 1,2,3 and columns 1, 6 and 9?


No, I mean columns 2, 6 and 9

Ted
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Thu Nov 19, 2009 2:37 am    Post subject: Reply with quote

Code:
+-------------------+-----------------+--------------+
| 2     (35)    8   | 9    4   (35)   | 1  7    6    |
| 357   (35)17  9   | 8    6   1357   | 4  2    (35) |
| 3457  6       134 | 137  2   (35)17 | 9  8    (35) |
+-------------------+-----------------+--------------+
| 1     8       5   | 6    3   49     | 7  49   2    |
| 46    9       7   | 5    1   2      | 3  46   8    |
| 346   34      2   | 47   79  8      | 5  469  1    |
+-------------------+-----------------+--------------+
| 357   357     6   | 2    79  379    | 8  1    4    |
| 9     2       134 | 134  8   134    | 6  5    7    |
| 8     147     14  | 147  5   6      | 2  3    9    |
+-------------------+-----------------+--------------+
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Thu Nov 19, 2009 3:14 am    Post subject: Reply with quote

Code:
.------------------.------------------.------------------.
| 2     35    8    | 9     4     35   | 1     7     6    |
| 357   1357  9    | 8     6     1357 | 4     2     35   |
| 3457  6     134  | 137   2     1357 | 9     8     35   |
:------------------+------------------+------------------:
| 1     8     5    | 6     3     49   | 7     49    2    |
| 46    9     7    | 5     1     2    | 3     46    8    |
| 346   34    2    | 47    79    8    | 5     469   1    |
:------------------+------------------+------------------:
| 357   357   6    | 2     79    379  | 8     1     4    |
| 9     2     134  | 134   8     134  | 6     5     7    |
| 8     147   14   | 147   5     6    | 2     3     9    |
'------------------'------------------'------------------'


found it, but I have to use a diagram.
in the DP on {3,5} in r123c269 we see that there are 4 candidates total within the DP cells that can destroy the deadly pattern.
{1,7} in r2c2 and {1,7} in r3c6

Code:
(1)r2c2
||
(7)r2c2 - (7)r79c2 = (7)r7c1 - (7)r7c5 = (7)r6c5 - (7=4)r6c4 - (4)r6c2 = (4)r9c2
||
(1)r3c6 - (1)r3c3 = (1)r2c2
||
(7)r6c3 - (7)r7c6
          ||
          (3)r7c6 - (3)r1c6 = (3)r2c6 - (3=4)r6c2 - (4=7)r6c4 - (7)r9c4 = (7)r9c2
          ||
          (9)r7c6 - (9=7)r7c5 - (7)r9c4 = (7)r9c2

all that to prove that r9c2 <> 1
which doesn't do very much.
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Thu Nov 19, 2009 4:20 am    Post subject: Reply with quote

ok, I had my head in this for a while.
here is the one stepper off the DP 35 pattern
I wrote it all out as a diagram.
all this does is eliminate 4 from r9c2 and solves the puzzle.
from the same {1,7} candidates in r2c2 and r3c6.
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Thu Nov 19, 2009 5:49 am    Post subject: Reply with quote

ERs (3,3)
XYZ-Wing (147)
Type 4 UR (46)
Multi-coloring (4)
M-Wing (34)
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Thu Nov 19, 2009 1:17 pm    Post subject: Reply with quote

Norm, that is the most impressive example of brute force, intelligent analysis of Sudoku I have ever seen or even imagined Exclamation Exclamation

Congratulation...................

Ted
Back to top
View user's profile Send private message
oaxen



Joined: 10 Jul 2006
Posts: 96

PostPosted: Thu Nov 19, 2009 6:13 pm    Post subject: Reply with quote

a "9" in r4c8 makes it a one stepper
Back to top
View user's profile Send private message Visit poster's website
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Thu Nov 19, 2009 6:33 pm    Post subject: Reply with quote

Well, it looks like everyone had fun ... either with or without the XYZ-Wing.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group