dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Jan 9 DB

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
Earl



Joined: 30 May 2007
Posts: 677
Location: Victoria, KS

PostPosted: Sat Jan 09, 2010 2:51 pm    Post subject: Jan 9 DB Reply with quote

The Jan 9 DB has a tempting xyz-wing that goes nowhere so I had to resort to the old chain gang.

A Solution: An xy-chain eliminates the 3 in R9C9 and solves the puzzle.
Earl


Code:

+-------+-------+-------+
| . . . | 7 . . | 9 . . |
| 6 5 . | . 1 . | 3 . 2 |
| 7 . . | . . . | . 6 . |
+-------+-------+-------+
| . . 5 | 6 . . | 8 . 9 |
| . . . | . . . | . . . |
| 4 . 3 | . . 9 | 1 . . |
+-------+-------+-------+
| . 6 . | . . . | . . 7 |
| 8 . 7 | . 2 . | . 9 1 |
| . . 1 | . . 4 | . . . |
+-------+-------+-------+

Play this puzzle online at the Daily Sudoku site
Back to top
View user's profile Send private message Send e-mail
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Sat Jan 09, 2010 3:28 pm    Post subject: Reply with quote

The 543 xyz-wing did it for me. Left one pair and the rest singles.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Jan 09, 2010 5:13 pm    Post subject: Reply with quote

Yes. After basics:
Code:
+----------------+----------------+----------------+
| 3    4    2    | 7    6    5    | 9    1    8    |
| 6    5    9    | 4    1    8    | 3    7    2    |
| 7    1    8    | 239  39   23   | 5    6    4    |
+----------------+----------------+----------------+
| 1    2    5    | 6    34   7    | 8    34   9    |
| 9    8    6    | 123  345  123  | 7    2345 35   |
| 4    7    3    | 28   58   9    | 1    25   6    |
+----------------+----------------+----------------+
| 5    6    4    | 1389 389  13   | 2    38   7    |
| 8    3    7    | 5    2    6    | 4    9    1    |
| 2    9    1    | 38   7    4    | 6    358  35   |
+----------------+----------------+----------------+


There is a -345 XYZ-wing in R5 that makes a pair 12 in B5R5.

I don't recall ever seeing an XYZ-wing that makes two eliminations. (There is a 34 UR that I didn't see. It destroys the XYZ-wing but reveals another.)

Keith
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Sun Jan 10, 2010 1:14 am    Post subject: Reply with quote

I believe, but am not confident, that the logic I employed is valid.

Code:

 *-----------------------------------------------------------*
 | 3     4     2     | 7     6     5     | 9     1     8     |
 | 6     5     9     | 4     1     8     | 3     7     2     |
 | 7     1     8     | 239   39    23    | 5     6     4     |
 |-------------------+-------------------+-------------------|
 | 1     2     5     | 6    #34    7     | 8    #34    9     |
 | 9     8     6     | 123  #345   123   | 7    #2345  3-5   |
 | 4     7     3     | 28    58    9     | 1    @25    6     |
 |-------------------+-------------------+-------------------|
 | 5     6     4     | 1389  389   13    | 2     38    7     |
 | 8     3     7     | 5     2     6     | 4     9     1     |
 | 2     9     1     | 38    7     4     | 6     358   35    |
 *-----------------------------------------------------------*


First, note the type 3 UR34 in r45c58, marked #, creates a pseudocell 25 to prevent the DP. Now observe the 25 in r5c8, marked @. Both of these see the 5 in r5c9, which can therefore be deleted. Question to those who understand the fundamentals: is this valid?

If so, the puzzle is solved.

Ted
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sun Jan 10, 2010 1:47 am    Post subject: Reply with quote

Ted: I'm just throwing in my opinion ... no expertise implied.

Although there is a UR Type 4 that results in r5c58<>3, I don't think your logic qualifies for a UR Type 3. However, basic (forcing chain) UR logic does apply for your elimination.

Code:
r5c58=5              =>  r5c9<>5
r5c 8=2  =>  r6c8=5  =>  r5c9<>5


Regards, Danny

Addendum: the <25> pseudo-cell in the UR is restricted to [r5], but your second <25> is not in [r5]. (You have a typo saying it is in r5c8.)
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Sun Jan 10, 2010 2:14 am    Post subject: Reply with quote

Danny, thanks for the feedback, and sorry about the typo. The reason that I assumed the deletion is valid is because both the pseudocell in row5 and the 25 in r6c8 "see" the 5 in r5c9. Maybe that is saying the same as your forcing chain.

Ted
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sun Jan 10, 2010 2:29 am    Post subject: Reply with quote

tlanglet wrote:
Danny, thanks for the feedback, and sorry about the typo. The reason that I assumed the deletion is valid is because both the pseudocell in row5 and the 25 in r6c8 "see" the 5 in r5c9. Maybe that is saying the same as your forcing chain.

Ted, I'm not sure if it's saying the same thing or not. I do know that I had fun with your observation.

If you don't like forcing chains:

Code:
UR[(5)r5c58 = (2)r5c8] - (2=13)r5c46 - (3=5)r5c9 - (5=2)r6c8 - UR[(2)r5c8 = (5)r5c58]

-or-

Code:
(5)r5c58 = (5)r5c9 - (5=2)r6c8 - (2)r5c8 = DP <34> in r45c58  =>  r5c58=5
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sun Jan 10, 2010 4:22 am    Post subject: Reply with quote

Ted,

Your logic is correct, but it is not a Type-3 UR.

One of R5C58 is 5, or R5C8 is 2. Either way, R5C9 (is not 5) is 3.

Keith
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sun Jan 10, 2010 7:45 pm    Post subject: Reply with quote

Ted,

One way of looking at your UR elimination is that it is really just an ALS elimination founded upon the UR. The two UR cells r5c58 contain 4 digits. However, we know that (at least) one of the UR digits must be false in both cells. Whichever it is, a 2-cell ALS results that contains the two non-UR digits. Thus, they can be used in any available ALS elimination, such as the one you make with the 25 bivalue ALS in r6c8. The shared exclusive (weak inference) digit is <2> and the shared common digit is <5>. Or, in Eureka:

34UR[(5)r5c58=(2)r5c8] - (2=5)r6c8; r5c9<>5

If r5c58 had been an actual ALS (no UR involved) the AIC would be identical except for the notation "ALS" in place of "34UR".

In fact, seeing the inherent UR strong inference and the weakly linked <2>s in c8 makes the same elimination evident without having to think about the potential ALS. (That is just another way to "find" this inherent strong inference.) Still, both points of view are interesting and valuable.
Back to top
View user's profile Send private message Visit poster's website
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group