dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Nataraj Special Holiday "NICE" #1

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Dec 24, 2010 5:14 pm    Post subject: Nataraj Special Holiday "NICE" #1 Reply with quote

Code:

+-------+-------+-------+
| 4 . . | 6 5 . | 3 . . |
| . 6 . | . . . | . . . |
| . . 3 | 7 4 . | . . 9 |
+-------+-------+-------+
| . . . | . . 7 | . . 3 |
| 2 1 . | . 8 . | . 7 5 |
| 7 . . | 5 . . | . . . |
+-------+-------+-------+
| 5 . . | . 7 4 | 2 . . |
| . . . | . . . | . 4 . |
| . . 2 | . 3 1 | . . 8 |
+-------+-------+-------+

Play this puzzle online at the Daily Sudoku site

Quote:
X-Wing (9)
Type 3 UR (78), killers create pincers; r1c9<>2
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Sat Dec 25, 2010 8:59 am    Post subject: Reply with quote

Marty, nice UR pincer move! You can play this without the x-wing for a one-stepper
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Sat Dec 25, 2010 3:55 pm    Post subject: Reply with quote

I also found the very clean AUR(78) but after viewing Marty's post I went for another solution, which resulted in a fun, long and messy event. No idea what steps were truly useful and what steps were not necessary.

xyz-wing (789)r1c3; r2c3<>8
x-wing(9)r15c39l; r246c3,r26c6<>9

The code at this point is:
Code:
 *-----------------------------------------------------------*
 | 4     278   789   | 6     5     289   | 3     1     27    |
 | 89    6     57    | 13    129   238   | 458   28    247   |
 | 1     258   3     | 7     4     28    | 568   268   9     |
 |-------------------+-------------------+-------------------|
 | 89    58    4568  | 14    129   7     | 1468  2689  3     |
 | 2     1     469   | 34    8     369   | 46    7     5     |
 | 7     3     468   | 5     129   26    | 1468  2689  24    |
 |-------------------+-------------------+-------------------|
 | 5     9     1     | 8     7     4     | 2     3     6     |
 | 3     78    78    | 2     6     5     | 9     4     1     |
 | 6     4     2     | 9     3     1     | 7     5     8     |
 *-----------------------------------------------------------*

Flightless AXY-wing (57-8) vertex (57)r2c3, pincers (58)r2c7 & (78)r8c3 with fin (4)r2c7; r46c3<>8
If xy-wing is true plus transport: (8)r2c7-r2c1=(8)r4c1;
If fin is true: (4)r2c7-(4=27)b3q36-(2=8)r2c8-r2c1=(8)r4c1;

And now a messy move:
Code:
 *--------------------------------------------------*
 | 4    278  789  | 6    5    289  | 3    1    27   |
 | 89   6    57   | 13   129  238  | 458  28   247  |
 | 1    258  3    | 7    4    28   | 568  268  9    |
 |----------------+----------------+----------------|
 | 89   58   456  | 14   129  7    | 146  269  3    |
 | 2    1    469  | 34   8    369  | 46   7    5    |
 | 7    3    46   | 5    19   26   | 18   89   24   |
 |----------------+----------------+----------------|
 | 5    9    1    | 8    7    4    | 2    3    6    |
 | 3    78   78   | 2    6    5    | 9    4    1    |
 | 6    4    2    | 9    3    1    | 7    5    8    |
 *--------------------------------------------------*

(8)r6c7=(8-9)r6c8=r4c8-(9=8)r4c1-(8=5)r4c2-r3c2=(5-7)r2c3=(7-4)r2c9=(4-5)r2c7*=(5)r3c7; r2c7*,r3c7<>8

xy-wing 2-69 vertex (29)r4c5; r5c7<>6

Ted
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Dec 27, 2010 4:35 am    Post subject: Reply with quote

I managed to work out a single-step alternative to my solver's solution. Since Ted didn't post his AUR(78), I don't know if I'm duplicating his effort.

Code:
 before Hidden Triple: dual eliminations on same UR but with different logic

 r18c23  <78> UR via s-links on <7>      <> 8    r1c3
     UR[(2)r1c2 = (9)r1c3] - (9=8)r2c1   <> 8    r1c2
 +-----------------------------------------------------------------------+
 |  4     *78+2  *78+9   |  6      5      289    |  3      1      27     |
 |  89     6      5789   |  13     129    2389   |  458    28     247    |
 |  1      258    3      |  7      4      28     |  568    268    9      |
 |-----------------------+-----------------------+-----------------------|
 |  89     58     45689  |  14     129    7      |  1468   2689   3      |
 |  2      1      469    |  34     8      369    |  46     7      5      |
 |  7      3      4689   |  5      129    269    |  1468   2689   24     |
 |-----------------------+-----------------------+-----------------------|
 |  5      9      1      |  8      7      4      |  2      3      6      |
 |  3     *78    *78     |  2      6      5      |  9      4      1      |
 |  6      4      2      |  9      3      1      |  7      5      8      |
 +-----------------------------------------------------------------------+
 # 66 eliminations remain

These eliminations can also be derived through external SIS in [r1], but it relies on a network of interactions for r1c9=7.
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Mon Dec 27, 2010 9:44 am    Post subject: Reply with quote

I assumed Marty and Ted's move was this one...
Code:
UR(78)[(2)r1c2=(9)r1c3] - (9=8)r2c1 - (8=2)r2c8 ; r1c9<>2
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Dec 27, 2010 10:09 am    Post subject: Reply with quote

That's a lot cleaner than what I found!!!
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Mon Dec 27, 2010 4:21 pm    Post subject: Reply with quote

That was my move Peter.

Ted
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Mon Dec 27, 2010 4:34 pm    Post subject: Reply with quote

I'm pretty sure it was mine too.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group