dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Free Press January 6, 2012
Goto page 1, 2  Next
 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Fri Jan 06, 2012 4:45 pm    Post subject: Free Press January 6, 2012 Reply with quote

Not yet done.
Code:
Puzzle: FP010612
+-------+-------+-------+
| . . . | . 2 . | 9 . . |
| 1 . . | . 7 . | 8 . 3 |
| . 4 6 | . . . | . 2 7 |
+-------+-------+-------+
| 7 . 8 | . . . | . 5 . |
| . . . | 7 . 4 | . . . |
| . 3 . | . . . | 1 . 2 |
+-------+-------+-------+
| 5 1 . | . . . | 2 9 . |
| 4 . 2 | . 1 . | . . 5 |
| . . 7 | . 4 . | . . . |
+-------+-------+-------+

Play this puzzle online at the Daily Sudoku site

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Jan 06, 2012 8:09 pm    Post subject: Reply with quote

Note: this is Clement's post. I moved it from a separate thread into the original thread started by Keith.

Marty


After the Basics:-
Code:


+----------+--------------+-------------+
| 38 7   5 | 3468 2  368  | 9  146  16  |
| 1  2   9 | 456  7  56   | 8  46   3   |
| 38 4   6 | 1389 89 1389 | 5  2    7   |
+----------+--------------+-------------+
| 7  69  8 | 12   3  12   | 4  5    69  |
| 2  5   1 | 7    69 4    | 36 368  689 |
| 69 3   4 | 689  5  689  | 1  7    2   |
+----------+--------------+-------------+
| 5  1   3 | 68   68 7    | 2  9    4   |
| 4  68  2 | 39   1  39   | 7  68   5   |
| 69 689 7 | 25   4  25   | 36 1368 168 |
+----------+--------------+-------------+

Remote Pairs 69; r9c9<>6 opens an XY-Wing 186 pivoted in r9c9; r12c8<>6 solves it.
_________________
Cnm


Last edited by Marty R. on Fri Jan 06, 2012 8:12 pm; edited 1 time in total
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Jan 06, 2012 8:11 pm    Post subject: Reply with quote

Same as Clement's, except I called the first move a Skyscraper.
Back to top
View user's profile Send private message
Clement



Joined: 24 Apr 2006
Posts: 1111
Location: Dar es Salaam Tanzania

PostPosted: Fri Jan 06, 2012 8:30 pm    Post subject: Free Press January 6, 2012 Reply with quote

Sorry, my above submission is a reply to keith's Free Press January 6, 2012 Puzzle. It is not a New Topic.I would like if it can be Modified.
Back to top
View user's profile Send private message AIM Address
SudoQ



Joined: 02 Aug 2011
Posts: 127

PostPosted: Fri Jan 06, 2012 9:04 pm    Post subject: Reply with quote

You can also show that r5c8<>8 (from r5/9c7=6).
/SudoQ
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Fri Jan 06, 2012 9:07 pm    Post subject: Reply with quote

Wing : (86)r8c8 6r95c7 3r5c78 : -8r5c8
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Jan 06, 2012 10:30 pm    Post subject: Reply with quote

JC Van Hay wrote:
Wing : (86)r8c8 6r95c7 3r5c78 : -8r5c8

JC, what kind of Wing is that? I can see an AIC where r8c8=6 proves 8 in r5c9.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Jan 07, 2012 5:50 am    Post subject: Reply with quote

Mutant swordfish on 6, R48C7, nukes a bunch of sixes, but does not solve it.

Keith
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sat Jan 07, 2012 6:27 pm    Post subject: Reply with quote

There are numerous eliminations present for <6>, including:

Code:
 +--------------------------------------------------------------+
 |  38    7     5     |  3468  2     368   |  9     146   16    |
 |  1     2     9     |  456   7     56    |  8     46    3     |
 |  38    4     6     |  1389  89    1389  |  5     2     7     |
 |--------------------+--------------------+--------------------|
 |  7     69    8     |  12    3     12    |  4     5     69    |
 |  2     5     1     |  7     69    4     | *36   *36+8  689   |
 |  69    3     4     |  689   5     689   |  1     7     2     |
 |--------------------+--------------------+--------------------|
 |  5     1     3     |  68    68    7     |  2     9     4     |
 |  4     68    2     |  39    1     39    |  7    %68    5     |
 |  69    689   7     |  25    4     25    | *36   *36+18 168   |
 +--------------------------------------------------------------+
 # 53 eliminations remain

 r59c78  <36> UR Type 4.2234             <> 6    r59c8   (doesn't crack puzzle)

Fortunately, the <36> UR has an alternate elimination that cracks the puzzle.

Code:
 r59c78  <36> UR via s-link + N_Singles  <> 3    r9c8    (using r8c8)

It uses the following assignments to force the <36> DP into the UR cells:

Code:
r9c8=3 r9c7=6 r8c8=8 r5c8=6 r5c7=3
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Jan 07, 2012 8:46 pm    Post subject: Reply with quote

-8 in R9C9 solves it. Rolling Eyes

Keith
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Sun Jan 08, 2012 5:06 pm    Post subject: Reply with quote

An almost xy-wing(68-3)r58c8+r9c7 = (6)r5c8-r4c9=r4c2-r6c1=r9c1-(6=3)r9c7; r5c7,r9c8<>3

Ted
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Sun Jan 08, 2012 9:28 pm    Post subject: Reply with quote

Marty R. wrote:
JC Van Hay wrote:
Wing : (86)r8c8 6r95c7 3r5c78 : -8r5c8

JC, what kind of Wing is that? I can see an AIC where r8c8=6 proves 8 in r5c9.
Marty,

An elimination results from a wing of the simplest kind if it can be justified by using 3 members of the B(ivalues)/B(ilocals)-Plot according to the following logical structure :

    If aA, bB and cC are members of the B/B-Plot, b(true)=>a(true) and B(true)=>C(true), then any candidate z seeing a and C can be eliminated.

      In Eureka notation : [z-]a=A-b=B-c=C[-z] => -z or z false

      In short : aA bB cC => -z [pincer* pivot *pincer => elimination]
As to the namings, one could call bB the pivot while the cells containing a and C (or perhaps more simply a and C) the pincers of the wing.
However the naming of the kind of wing is somewhat useless because of the 2x2x2=8 possible combinations of bivalues and bilocals and the number of digits (from 1 to 3) permitted by each combination.

So, in the present case, the wing contains 1 bivalue and 2 bilocals; 3 digits are involved; the bilocal 6r95c7 is the pivot, [8]r8c8 and [5]r5c8 are the pincers.
It is easyly seen that r9c7=6 => r8c8=8 and r5c7=6 => r5c8=3. Therefore, r5c8<>8 as 8r5c8 sees 8r8c8 (same digit in the same unit) and 3r5c8 (same cell).

Best Regards, JC

PS : In the more general sense, an elimination could be said as resulting from a wing if it can be justified by using a 3x3 (Mixed Block or not) Forbidding Matrix. But that is another story. Exclamation Very Happy
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Mon Jan 09, 2012 2:45 am    Post subject: Reply with quote

JC Van Hay wrote:
In Eureka notation : [z-]a=A-b=B-c=C[-z] => -z or z false

Thanks JC Very Happy
I am seeing wings in a whole new light! Is this correct?
Code:
+----------+--------------+-------------+
| 38 7   5 | 3468 2  368  | 9  146  16  |
| 1  2   9 | 456  7  56   | 8  46   3   |
| 38 4   6 | 1389 89 1389 | 5  2    7   |
+----------+--------------+-------------+
| 7  69  8 | 12   3  12   | 4  5    69  |
| 2  5   1 | 7    69 4    |*36c36-8 689 |
| 69 3   4 | 689  5  689  | 1  7    2   |
+----------+--------------+-------------+
| 5  1   3 | 68   68 7    | 2  9    4   |
| 4  68  2 | 39   1  39   | 7 a68   5   |
| 69 689 7 | 25   4  25   |b36 1368 168 |
+----------+--------------+-------------+
xy-wing
(8=6)r8c8-(6=3)r7-(3=8)b6 => r5c8<>8
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 398

PostPosted: Mon Jan 09, 2012 4:08 am    Post subject: Reply with quote

JC Van Hay wrote:
Wing : (86)r8c8 6r95c7 3r5c78 : -8r5c8
arkietech wrote:
xy-wing
(8=6)r8c8-(6=3)r7-(3=8)b6 => r5c8<>8

What happened to ... (8=6)r8c8 - (6)r9c7 = (6-3)r5c7 = (3)r5c8 => r5c8<>8
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Jan 09, 2012 8:36 am    Post subject: Reply with quote

JC Van Hay wrote:
Wing : (86)r8c8 6r95c7 3r5c78 : -8r5c8

My interpretation: 3-SIS => "wing" to JC

Code:
3-SIS: (8=6)r8c8 - (6)r9c7=(6)r5c7 - (3)r5c7=(3)r5c8 => r5c8<>8

After notational condensation: ronk's chain

Code:
3-SIS: (8=6)r8c8 - (6)r9c7 = (6-3)r5c7 = (3)r5c8 => r5c8<>8

arkietech: I think your chain is incorrect.

JC Van Hay: I appreciate that you now identify (ordered) cells instead of base units. Much easier to follow!

Regards, Danny
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Mon Jan 09, 2012 12:44 pm    Post subject: Reply with quote

daj95376 wrote:
arkietech: I think your chain is incorrect.

Danny,

Consider this:
Code:
(8=6)r8c8-(6=3)r7-(3=8)b6 =>
(8=6)r8c8-(6=3)r9c7-(3=6)r5c7-(6=3)r5c8 => r5c8<>8
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Jan 09, 2012 5:11 pm    Post subject: Reply with quote

[Withdrawn: too much to address after ronk's comments]

Last edited by daj95376 on Mon Jan 09, 2012 5:38 pm; edited 3 times in total
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 398

PostPosted: Mon Jan 09, 2012 5:12 pm    Post subject: Reply with quote

arkietech wrote:
Consider this:
Code:
(8=6)r8c8-(6=3)r9c7-(3=6)r5c7-(6=3)r5c8 => r5c8<>8

You're fine until the last strong inference, which should be (6=3|8)r5c8, which means ... if r5c8<>6, then r5c8=3 or r5c8=8. If the former, r5c8<>8 as you say. If the latter, we have a derived strong inference (8)r8c8=(8)r5c8, which merely duplicates an existing native strong inference. Taken together, the entire AIC then implies nothing useful. However ..

(3&6=8)r5c78 - (8=6)r8c8 - (6=3)r9c7 - (3=6)r5c7 ==> r5c59, r4c9<>6
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Mon Jan 09, 2012 8:02 pm    Post subject: Reply with quote

arkietech wrote:
... Is this correct?
Code:
+----------+--------------+-------------+
| 38 7   5 | 3468 2  368  | 9  146  16  |
| 1  2   9 | 456  7  56   | 8  46   3   |
| 38 4   6 | 1389 89 1389 | 5  2    7   |
+----------+--------------+-------------+
| 7  69  8 | 12   3  12   | 4  5    69  |
| 2  5   1 | 7    69 4    |*36c36-8 689 |
| 69 3   4 | 689  5  689  | 1  7    2   |
+----------+--------------+-------------+
| 5  1   3 | 68   68 7    | 2  9    4   |
| 4  68  2 | 39   1  39   | 7 a68   5   |
| 69 689 7 | 25   4  25   |b36 1368 168 |
+----------+--------------+-------------+
xy-wing
(8=6)r8c8-(6=3)r7-(3=8)b6 => r5c8<>8


Dan,

Yes, it is correct. Your "xy"-wing is made up of 2 bivalues (native SIS), (68)r8c8 and (36)r9c7, and 1 pseudo-bivalue (derived SIS), (38)r5c79, coming from the observation of 3r5c7=(3-8)r5c8=8r5c9 => 3r5c7=8r5c9 or (3=8)r5c79 or (3=8)b6.

Best Regards, JC
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 398

PostPosted: Mon Jan 09, 2012 9:53 pm    Post subject: Reply with quote

JC Van Hay wrote:
Your "xy"-wing is made up of 2 bivalues (native SIS), (68)r8c8 and (36)r9c7, and 1 pseudo-bivalue (derived SIS), (38)r5c79, coming from the observation of 3r5c7=(3-8)r5c8=8r5c9 => 3r5c7=8r5c9 or (3=8)r5c79 or (3=8)b6.

Laughing Good joke! However, if there wasn't a cannibalistic exclusion within the pseudo-bivalue, then ...
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Goto page 1, 2  Next
Page 1 of 2

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group