| View previous topic :: View next topic | 
	
	
		| Author | Message | 
	
		| arkietech 
 
 
 Joined: 31 Jul 2008
 Posts: 1834
 Location: Northwest Arkansas USA
 
 | 
			
				|  Posted: Wed Oct 10, 2012 5:13 am    Post subject: Menneske 2038613 |   |  
				| 
 |  
				|  	  | Code: |  	  | *-----------*
 |...|...|7..|
 |.4.|185|...|
 |..9|.7.|.3.|
 |---+---+---|
 |.7.|.1.|.9.|
 |.93|2.7|18.|
 |.8.|.3.|.2.|
 |---+---+---|
 |.2.|.6.|9..|
 |...|321|.7.|
 |..5|...|...|
 *-----------*
 
 | 
 
 Play/Print this puzzle online
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Clement 
 
 
 Joined: 24 Apr 2006
 Posts: 1113
 Location: Dar es Salaam Tanzania
 
 | 
			
				|  Posted: Wed Oct 10, 2012 7:53 am    Post subject: Menneske 2038613 |   |  
				| 
 |  
				| Code after Basics XY-Chain ABCD: r6c3=6; r4c13<>6, r6c6<>6 	  | Code: |  	  | +------------+------------+------------+
 | 268  1 268 | 469 49 3   | 7   5  48  |
 | 3    4 7   | 1   8  5   | 2   6  9   |
 | 68   5 9   | 46  7  2   | 48  3  1   |
 +------------+------------+------------+
 | 245-6 7 2-6  | 8   1  D46  | 3   9  456 |
 | 46   9 3   | 2   5  7   | 1   8  46  |
 | 1456 8 A16  | 469 3  4-69 | 456 2  7   |
 +------------+------------+------------+
 | 7    2 B18  | 5   6  C48  | 9   14 3   |
 | 9    6 4   | 3   2  1   | 58  7  58  |
 | 18   3 5   | 7   49 489 | 26  14 26  |
 +------------+------------+------------+
 
 | 
 (6=1)r6c3-(1=8)r7c3-(8=4)r7c6-(4=6)r4c6; r4c13<>6, r6c6<>6 solves it.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| tlanglet 
 
 
 Joined: 17 Oct 2007
 Posts: 2468
 Location: Northern California Foothills
 
 | 
			
				|  Posted: Wed Oct 10, 2012 2:00 pm    Post subject: |   |  
				| 
 |  
				| My initial solution was the same as that already posted by Clement so I looked for an alternative. 
 I did spot an almost hidden  pair AHP(45)r46c1=(4)r5c1 which set r5c1=4 but, to my surprise and disappointment, it did not advance the puzzle.
 
 So, I settled for a variation of my original solution:
 
 5r6c7=(5-1)r6c1=r6c3-(1=8=4)r7c36-r46c6=r6c4-(4=5)r6c7 => 5r6c7
 
 Ted
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| arkietech 
 
 
 Joined: 31 Jul 2008
 Posts: 1834
 Location: Northwest Arkansas USA
 
 | 
			
				|  Posted: Wed Oct 10, 2012 2:25 pm    Post subject: |   |  
				| 
 |  
				| I like wings. 
 
  	  | Code: |  	  | *-----------------------------------------------------------*
 | 268   1     268   | 469   49    3     | 7     5     48    |
 | 3     4     7     | 1     8     5     | 2     6     9     |
 | 68    5     9     | 46    7     2     | 48    3     1     |
 |-------------------+-------------------+-------------------|
 | 245-6 7     2-6   | 8     1    a46    | 3     9     456   |
 | 46    9     3     | 2     5     7     | 1     8     46    |
 | 1456  8    c16    | 49    3     49-6  | 45    2     7     |
 |-------------------+-------------------+-------------------|
 | 7     2    b18    | 5     6    b48    | 9     14    3     |
 | 9     6     4     | 3     2     1     | 58    7     58    |
 | 18    3     5     | 7     49    489   | 6     14    2     |
 *-----------------------------------------------------------*
 als xy-wing
 (6=4)r4c6-(4=1)als:r7c36-(1=6)r6c3 => -6r4c13,r6c6; stte
 
 | 
 
 Play/Print this puzzle online
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Wed Oct 10, 2012 6:32 pm    Post subject: |   |  
				| 
 |  
				|  	  | Code: |  	  | +----------------+----------------+----------------+ | 268  1    268  | 49+6 49   3    | 7    5    48   |
 | 3    4    7    | 1    8    5    | 2    6    9    |
 | 68   5    9    | 46   7    2    | 48   3    1    |
 +----------------+----------------+----------------+
 | 2456 7    26   | 8    1    46   | 3    9    456  |
 | 46   9    3    | 2    5    7    | 1    8    46   |
 | 1456 8   C16   | 49   3  A49+6  | 45   2    7    |
 +----------------+----------------+----------------+
 | 7    2    8-1  | 5    6    48   | 9    14   3    |
 | 9    6    4    | 3    2    1    | 58   7    58   |
 |D18   3    5    | 7    49 B49+8  | 6    14   2    |
 +----------------+----------------+----------------+
 | 
 Note the DP 49 in R169C456.
 
 One way to prevent the DP is that AB is 68, forming an XY-wing with CD.  R7C3 <>1. (Which solves the puzzle.)
 
 Now, how to make an argument about R1C4 <6>?
 
 Keith
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Thu Oct 11, 2012 2:14 am    Post subject: |   |  
				| 
 |  
				| I also used the DP 49 in boxes 258. Either r1c4 or r6c6=6 or r9c6=8. Common outcome; r4c6=6. |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| keith 
 
 
 Joined: 19 Sep 2005
 Posts: 3355
 Location: near Detroit, Michigan, USA
 
 | 
			
				|  Posted: Thu Oct 11, 2012 2:28 am    Post subject: |   |  
				| 
 |  
				|  	  | Marty R. wrote: |  	  | I also used the DP 49 in boxes 258. Either r1c4 or r6c6=6 or r9c6=8. Common outcome; r4c6=6. | 
 r6c6 = 6 implies r4c6 =6?  How can that be?  They are in the same column.
 
 Keith
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Marty R. 
 
 
 Joined: 12 Feb 2006
 Posts: 5770
 Location: Rochester, NY, USA
 
 | 
			
				|  Posted: Thu Oct 11, 2012 2:44 am    Post subject: |   |  
				| 
 |  
				| You beat me to it. I was going to delete the post, but you're too fast and (justifiably) untrusting.    |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| daj95376 
 
 
 Joined: 23 Aug 2008
 Posts: 3854
 
 
 | 
			
				|  Posted: Thu Oct 11, 2012 5:15 pm    Post subject: |   |  
				| 
 |  
				|  	  | keith wrote: |  	  |  	  | Marty R. wrote: |  	  | I also used the DP 49 in boxes 258. Either r1c4 or r6c6=6 or r9c6=8. Common outcome; r4c6=6. | 
 r6c6 = 6 implies r4c6 =6?  How can that be?  They are in the same column.
 
 | 
 If r6c6=6 is false, then it's conceivable that it could lead to r4c6=6.
 
 Guess what, r6c6=6 is false. Unfortunately, Marty doesn't list his derived chains.
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Luke451 
 
 
 Joined: 20 Apr 2008
 Posts: 310
 Location: Southern Northern California
 
 | 
			
				|  Posted: Thu Oct 11, 2012 10:03 pm    Post subject: |   |  
				| 
 |  
				|  	  | keith wrote: |  	  |  	  | Marty R. wrote: |  	  | I also used the DP 49 in boxes 258. Either r1c4 or r6c6=6 or r9c6=8. Common outcome; r4c6=6. | 
 r6c6 = 6 implies r4c6 =6?  How can that be?  They are in the same column.
 | 
 
 
  	  | Code: |  	  | *-----------------------------------------------------------* | 268   1     268   | 469   49    3     | 7     5     48    |
 | 3     4     7     | 1     8     5     | 2     6     9     |
 | 68    5     9     | 46    7     2     | 48    3     1     |
 |-------------------+-------------------+-------------------|
 | 2456  7     26    | 8     1     46    | 3     9     456   |
 | 46    9     3     | 2     5     7     | 1     8     46    |
 | 1456  8     16    | 49    3     469   | 45    2     7     |
 |-------------------+-------------------+-------------------|
 | 7     2     18    | 5     6     48    | 9     14    3     |
 | 9     6     4     | 3     2     1     | 58    7     58    |
 | 18    3     5     | 7     49    489   | 6     14    2     |
 *-----------------------------------------------------------*
 | 
 (6)r6c6-(6=1)r6c3-(1=8)r7c3-(8=4)r7c6-(4=6)r4c6
 
 So Marty, if you can remember the other two paths, I'd  say you're exonerated
  |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| ronk 
 
 
 Joined: 07 May 2006
 Posts: 398
 
 
 | 
			
				|  Posted: Thu Oct 11, 2012 10:12 pm    Post subject: |   |  
				| 
 |  
				|  	  | Luke451 wrote: |  	  | (6)r6c6-(6=1)r6c3-(1=8)r7c3-(8=4)r7c6-(4=6)r4c6
 
 So Marty, if you can remember the other two paths, I'd  say you're exonerated
  | 
 However, proving r6c6<>6 doesn't make r4c6=6 an "outcome".
 |  | 
	
		| Back to top |  | 
	
		|  | 
	
		| Luke451 
 
 
 Joined: 20 Apr 2008
 Posts: 310
 Location: Southern Northern California
 
 | 
			
				|  Posted: Thu Oct 11, 2012 10:27 pm    Post subject: |   |  
				| 
 |  
				|  	  | ronk wrote: |  	  |  	  | Luke451 wrote: |  	  | (6)r6c6-(6=1)r6c3-(1=8)r7c3-(8=4)r7c6-(4=6)r4c6
 
 So Marty, if you can remember the other two paths, I'd  say you're exonerated
  | 
 However, proving r6c6<>6 doesn't make r4c6=6 an "outcome".
 | 
 Yah, sure. One would have to prove the same "outcome" from (6)r1c4 and (8)r9c6.
 
 @ Ted: I'm gonna start calling you "Extra Node Langlet."
  |  | 
	
		| Back to top |  | 
	
		|  | 
	
		|  |