dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Mega-uniqueness

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
Myth Jellies



Joined: 27 Jun 2006
Posts: 64

PostPosted: Wed Jun 04, 2008 5:02 pm    Post subject: Mega-uniqueness Reply with quote

Most of the seventeen-clue puzzles are fairly simple to solve. Here is one of the "intransigent 17's" that is a bit more difficult.

Code:
 .   7   . | .   .   . | 4   .   8
 2   .   . | .   9   . | .   .   .
 .   .   . | .   3   . | 6   .   .
-----------+-----------+-----------
 .   6   . | 7   .   . | 5   .   .
 .   .   . | .   .   . | .   9   2
 .   .   1 | .   .   . | .   .   .
-----------+-----------+-----------
 9   .   . | .   .   . | .   1   .
 .   .   . | 8   .   . | .   .   .
 3   .   . | .   .   . | .   .   .


It turns out that aside from the basics, one can solve this puzzle using only uniqueness deductions, but you will need to use a permeable MUG pattern (one that I presented in the permeable MUG tutorial above) in your arsenal of uniqueness tricks. Even after that I had to get pretty clever. See if you can find a basics + uniqueness only pathway to the solution. (Thanks to Eleven for finding this MUG example)

edited to add link


Last edited by Myth Jellies on Thu Jun 05, 2008 6:21 pm; edited 1 time in total
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Wed Jun 04, 2008 10:45 pm    Post subject: Reply with quote

harder indeed, SE 7.2 with 9 forcing chains

Code:
.---------------------.---------------------.---------------------.
| 156    7      9     | 1256   256    256   | 4      3      8     |
| 2      34     346   | 46     9      8     | 7      5      1     |
|-145    18    45-8   | 145    3      7     | 6      2      9     |
:---------------------+---------------------+---------------------:
| 8      6      2     | 7      1      9     | 5      4      3     |
| 457    345    3457  | 56     8      456   | 1      9      2     |
| 45     9      1     | 3     -245    245   | 8      67     67    |
:---------------------+---------------------+---------------------:
| 9      28   4567(8) | 256  (2)4567  2456  | 3      1      4567  |
|(1)4567 12     4567  | 8    (2)4567  3     | 9      67     4567  |
| 3      45     4567  | 9      4567   1     | 2      8      4567  |
'---------------------'---------------------'---------------------'


the grid above actually has a UR type 1 on {6,7} in r68c89 which removes 6 and 7 from r8c9, that aside...
i am just going to take a guess from what I know about MUGs so far, that the candidates {4,5,6,7} have something to do with the MUG pattern.
with my knowledge about BUGs, I would assume that the extra candidate must be placed in the cells that have them. or can be assumed to occupy them in a way to eliminate other candidates they see??
for example since the 2's in r78c5 ( according to BUG ) must go in either... you could eliminate the 2 in r6c5
Rolling Eyes just taking an educated stab
Back to top
View user's profile Send private message
Myth Jellies



Joined: 27 Jun 2006
Posts: 64

PostPosted: Wed Jun 04, 2008 11:29 pm    Post subject: Reply with quote

Norm, you have the right digits, but one too many cells. 7.2; the cool part is that we are going to avoid all of those forcing chains Cool. Once you find the correct MUG deduction, there is still quite a bit of work to do.

Last edited by Myth Jellies on Wed Jun 04, 2008 11:44 pm; edited 1 time in total
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Wed Jun 04, 2008 11:37 pm    Post subject: Reply with quote

so just the three columns?? 3,5,9... the concept is that if only 4,5,6,7 were in those cells, that the puzzle would have more than one solution??
so can I assume that the number of solutions wouldn't be worth figuring out since there are many extra candidates?
Back to top
View user's profile Send private message
Myth Jellies



Joined: 27 Jun 2006
Posts: 64

PostPosted: Wed Jun 04, 2008 11:53 pm    Post subject: Reply with quote

Yes, the MUG
Code:

abcd  .  . | abcd  .  . | abcd  .  .
abcd  .  . | abcd  .  . | abcd  .  .
abcd  .  . | abcd  .  . | abcd  .  .
-----------+------------+------------
.     .  . | .     .  . | .     .  .
.     .  . | .     .  . | .     .  .
.     .  . | .     .  . | .     .  .
-----------+------------+------------
.     .  . | .     .  . | .     .  .
.     .  . | .     .  . | .     .  .
.     .  . | .     .  . | .     .  .


is a pattern that will always result in zero or multiple solutions. Just how many doesn't matter so long as it can never be one solution. Thus that pattern has to be avoided just like a UR.
Back to top
View user's profile Send private message
ravel



Joined: 21 Apr 2006
Posts: 536

PostPosted: Thu Jun 05, 2008 10:26 am    Post subject: Reply with quote

Nice pattern (but not very common, i suppose).

Thanks for your new MUG thread, Myth, now i have a good one to point to for deadly patterns.
Back to top
View user's profile Send private message
Steve R



Joined: 24 Oct 2005
Posts: 289
Location: Birmingham, England

PostPosted: Thu Jun 05, 2008 7:55 pm    Post subject: Reply with quote

I think this is the same solution as Norm’s. After basics:

Code:
+---------------------------------------------------+
| 156   7    9      | 1256 256    256  | 4 3  8     |
| 2     34   346    | 46   9      8    | 7 5  1     |
| 145   18   458    | 145  3      7    | 6 2  9     |
--------------------------------------------------
| 8     6    2      | 7    1      9    | 5 4  3     |
| 457   345  3457   | 56   8      456  | 1 9  2     |
| 45    9    1      | 3    245    245  | 8 67 67    |
--------------------------------------------------
| 9     28   4567+8 | 256  4567+2 2456 | 3 1  4567+ |
| 14567 12   4567+  | 8    4567+2 3    | 9 67 4567+ |
| 3     45   4567+  | 9    4567+  1    | 2 8  4567+ |
+---------------------------------------------------+

The MUG marked + means that r78c5 contain 2 or r7c3 contains 8. In the latter case the (28) in r7c2 forces the 2 of box 8 into r8c5. Whichever applies 2 may be eliminated from r7c46. This brings us to

Code:
+---------------------------------------------------+
| 1     7    9      | 2    56     56   | 4 3  8     |
| 2     3    6      | 4    9      8    | 7 5  1     |
| 45    8    45     | 1    3      7    | 6 2  9     |
--------------------------------------------------
| 8     6    2      | 7    1      9    | 5 4  3     |
| 7     45   3      | 56+  8      56+4 | 1 9  2     |
| 45    9    1      | 3    45     2    | 8 6  7     |
--------------------------------------------------
| 9     2    8      | 56+  7      56+4 | 3 1  456   |
| 6     1    45     | 8    2      3    | 9 7  45    |
| 3     45   7      | 9    456    1    | 2 8  456   |
+---------------------------------------------------+


Now the UR marked + means that r5c6 or r7c6 contains 4. If the latter, 4 is eliminated from r9c5 directly; if the former, the conjugates in column 2 force the same elimination. And the puzzle is solved.

A fine MUG, indeed!

Steve
Back to top
View user's profile Send private message
Myth Jellies



Joined: 27 Jun 2006
Posts: 64

PostPosted: Fri Jun 06, 2008 5:45 am    Post subject: Reply with quote

Steve. That will work.

It figures Embarassed . Essentially a skyscraper/finned fish finishes it off. My paper got a bit messy so I missed that and went for the following nut-job moves.

Code:

 *--------------------------------------------------*
 | 1    7    9    | 2    56   56   | 4    3    8    |
 | 2    3    6    | 4    9    8    | 7    5    1    |
 | 45   8    45   | 1    3    7    | 6    2    9    |
 |----------------+----------------+----------------|
 | 8    6    2    | 7    1    9    | 5    4    3    |
 | 7    45   3    | 56   8    46+5 | 1    9    2    |
 | 45   9    1    | 3    45   2    | 8    6    7    |
 |----------------+----------------+----------------|
 | 9    2    8    | 56   7    45+6 | 3    1    46+5 |
 | 6    1    45   | 8    2    3    | 9    7    45   |
 | 3    45   7    | 9    46+5 1    | 2    8    56+4 |
 *--------------------------------------------------*

BUG+5! BUG avoidance options in r5c6, r7c69, and r9c5 directly inhibit r7c6 = 5, The remaining BUG avoidance option, a 4 in r9c9 also inhibits the 5 in r7c6 due to the bilocated 4's in row 7. Hence r7c6 <> 5.


Code:

 *--------------------------------------------------*
 | 1    7    9    | 2    56   56   | 4    3    8    |
 | 2    3    6    | 4    9    8    | 7    5    1    |
 |*45   8   *45   | 1    3    7    | 6    2    9    |
 |----------------+----------------+----------------|
 | 8    6    2    | 7    1    9    | 5    4    3    |
 | 7   *45   3    |*56   8   *46+5 | 1    9    2    |
 |*45   9    1    | 3    45   2    | 8    6    7    |
 |----------------+----------------+----------------|
 | 9    2    8    |*56   7   *46   | 3    1   *45+6 |
 | 6    1   *45   | 8    2    3    | 9    7   *45   |
 | 3   *45   7    | 9   *45+6 1    | 2    8    456  |
 *--------------------------------------------------*

Still not seeing the easy patterns in the fours. Starred cells denote a big BUG-Lite+3. Two of the BUG avoidance digits inhibit the 6 in r7c4 directly, and the final option in r5c6 inhibits it via the 56-cell in r5c4. Hence r7c4 <> 6.

And then of course from here...
Code:
 
 *--------------------------------------------------*
 | 1    7    9    | 2    56   56   | 4    3    8    |
 | 2    3    6    | 4    9    8    | 7    5    1    |
 | 45   8    45   | 1    3    7    | 6    2    9    |
 |----------------+----------------+----------------|
 | 8    6    2    | 7    1    9    | 5    4    3    |
 | 7    45   3    | 6    8    45   | 1    9    2    |
 | 45   9    1    | 3    45   2    | 8    6    7    |
 |----------------+----------------+----------------|
 | 9    2    8    | 5    7    46   | 3    1    46   |
 | 6    1    45   | 8    2    3    | 9    7    45   |
 | 3    45   7    | 9    46   1    | 2    8    56+4 |
 *--------------------------------------------------*

...just to be consistent, it's got to be a BUG+1.

At least the MUG was still useful, which was the whole point. What my endgame lacked in grace and simplicity, I'd like to think it made up for in sheer bloody-mindedness Rolling Eyes
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group