View previous topic :: View next topic |
Author |
Message |
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Sun Jan 11, 2009 1:09 pm Post subject: Salsa #1 |
|
|
Code: | +-----------------------+
| . . 5 | . . . | . . . |
| . 9 . | 5 2 . | . 4 7 |
| 6 . . | . . 4 | . 8 . |
|-------+-------+-------|
| . 5 . | . 1 . | . 2 4 |
| . 6 . | 2 . 5 | . . . |
| . . 2 | . 7 3 | . . . |
|-------+-------+-------|
| . . . | . . . | . . . |
| . 1 7 | 3 . . | . 6 . |
| . 2 . | 4 . . | . . 5 |
+-----------------------+
|
Play this puzzle online at the Daily Sudoku site
===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== ===== =====
Can be solved using steps from ...
Basics: Naked/Hidden Single, Naked Pair/Triple, Locked Candidate 1/2
Basics+: Naked Quad, Hidden Pair/Triple/Quad
VH: BUG+1, Remote Pair, UR Type 1, X-Wing, XY-Wing
Advanced: 2-String Kite, Empty Rectangle, Skyscraper, UR Type 2, XYZ-Wing
Extreme: finned X-Wing, M-Wing, W-Wing, XY-Chain
Extreme+: Swordfish, Jellyfish, (but mostly) Chain |
|
Back to top |
|
|
storm_norm
Joined: 18 Oct 2007 Posts: 1741
|
Posted: Mon Jan 12, 2009 3:27 am Post subject: |
|
|
Code: | .---------------------.---------------------.---------------------.
| 2 4 5 | 1678 368 1678 | 1369 139 1369 |
|*13 9 8 | 5 2 -16 | 136 4 7 |
| 6 7 *13 |*19 39 4 | 5 8 2 |
:---------------------+---------------------+---------------------:
|*37 5 39 | 689 1 689 |*3679 2 4 |
| 137 6 139 | 2 4 5 | 8 379 39 |
| 4 8 2 | 69 7 3 | 169 5 169 |
:---------------------+---------------------+---------------------:
| 589 3 4 |-16789 5689 16789 | 2 179 189 |
| 589 1 7 | 3 589 2 | 4 6 89 |
| 89 2 6 | 4 89 *17 |*137 137 5 |
'---------------------'---------------------'---------------------' |
(1=7)r9c6 - (7)r9c7 = (7)r4c7 - (7=3)r4c1 - (3)r2c1 = (3-1)r3c3 = (1)r3c4; r7c4 and r2c6 is not 1
Code: | .------------------.------------------.------------------.
| 2 4 5 | 178 38 78 | 1369 139 1369 |
| 13 9 8 | 5 2 6 | 13 4 7 |
| 6 7 Y13 |Y19 39 4 | 5 8 2 |
:------------------+------------------+------------------:
| 37 5 Y39 |68-9 1 89 | 3679 2 4 |
| 137 6 139 | 2 4 5 | 8 379 39 |
| 4 8 2 | 69 7 3 | 169 5 169 |
:------------------+------------------+------------------:
| 5 3 4 | 789 6 1789 | 2 179 189 |
| 89 1 7 | 3 5 2 | 4 6 89 |
| 89 2 6 | 4 89 17 | 137 137 5 |
'------------------'------------------'------------------' |
xy-wing eliminates 9 from r4c4
Code: | .------------------.------------------.------------------.
| 2 4 5 | 178 *38 7-8 | 1369 139 1369 |
| 13 9 8 | 5 2 6 | 13 4 7 |
| 6 7 *13 | 19 *39 4 | 5 8 2 |
:------------------+------------------+------------------:
| 37 5 *39 | 68 1 *89 | 3679 2 4 |
| 137 6 139 | 2 4 5 | 8 379 39 |
| 4 8 2 | 69 7 3 | 169 5 169 |
:------------------+------------------+------------------:
| 5 3 4 | 789 6 1789 | 2 179 189 |
| 89 1 7 | 3 5 2 | 4 6 89 |
| 89 2 6 | 4 89 17 | 137 137 5 |
'------------------'------------------'------------------' |
(8=3)r1c5 - (3)r3c5 = (3)r3c4 - (3=9)r4c3 - (9=8)r4c6; r1c6 <> 8
this is also a xy-chain add the (9,1) cell... 83-39-91-13-39-98
Code: | .------------------.------------------.------------------.
| 2 4 5 | 18 38 7 | 1369 139 1369 |
|W13 9 8 | 5 2 6 |W13 4 7 |
| 6 7 13 | 19 39 4 | 5 8 2 |
:------------------+------------------+------------------:
|W37 5 39 | 68 1 89 |36-79 2 4 |
| 137 6 139 | 2 4 5 | 8 379 39 |
| 4 8 2 | 69 7 3 | 169 5 169 |
:------------------+------------------+------------------:
| 5 3 4 | 7 6 89 | 2 19 189 |
| 89 1 7 | 3 5 2 | 4 6 89 |
| 89 2 6 | 4 89 1 |W37 37 5 |
'------------------'------------------'------------------' |
W-wing {3,7}
(7=3)r4c1 - (3)r2c1 = (3)r2c7 - (3=7)r9c7; r4c7 <> 7
Code: | .------------------.------------------.------------------.
| 2 4 5 | 18 38 7 | 1369 139 *1369 |
|*13 9 8 | 5 2 6 |*13 4 7 |
| 6 7 13 | 19 39 4 | 5 8 2 |
:------------------+------------------+------------------:
| 7 5 39 | 68 1 89 | 369 2 4 |
|1-3 6 139 | 2 4 5 | 8 7 *39 |
| 4 8 2 | 69 7 3 | 169 5 169 |
:------------------+------------------+------------------:
| 5 3 4 | 7 6 89 | 2 19 189 |
| 89 1 7 | 3 5 2 | 4 6 89 |
| 89 2 6 | 4 89 1 | 7 3 5 |
'------------------'------------------'------------------' |
the marked multicoloring on 3 finishes it.
{3}... r2c1 = r2c7 - r1c9 = r5c9; r5c1 <> 3
edit:
Mulligan taken on my initial Misleading M-wing; my mindblock made me make mind numbing misplacements.
Last edited by storm_norm on Tue Jan 13, 2009 7:30 pm; edited 2 times in total |
|
Back to top |
|
|
ronk
Joined: 07 May 2006 Posts: 398
|
Posted: Tue Jan 13, 2009 11:14 am Post subject: |
|
|
storm_norm wrote: | Code: | .---------------------.---------------------.---------------------.
| 2 4 5 |M1678 368 M1678 | 1369 139 1369 |
| 13 9 8 | 5 2 -16 | 136 4 7 |
| 6 7 13 |M19 39 4 | 5 8 2 |
:---------------------+---------------------+---------------------:
| 37 5 39 | 689 1 689 | 3679 2 4 |
| 137 6 139 | 2 4 5 | 8 379 39 |
| 4 8 2 | 69 7 3 | 169 5 169 |
:---------------------+---------------------+---------------------:
| 589 3 4 |-16789 5689 16789 | 2 179 189 |
| 589 1 7 | 3 589 2 | 4 6 89 |
| 89 2 6 | 4 89 M17 | 137 137 5 |
'---------------------'---------------------'---------------------' |
the marked M-wing gets rid of the 1 in r7c4 and r2c6. |
Just cruising around, trying to find out how people are using the m-wing term. How exactly does your deduction above work? |
|
Back to top |
|
|
storm_norm
Joined: 18 Oct 2007 Posts: 1741
|
Posted: Tue Jan 13, 2009 7:15 pm Post subject: |
|
|
ronk wrote: | storm_norm wrote: | Code: | .---------------------.---------------------.---------------------.
| 2 4 5 |M1678 368 M1678 | 1369 139 1369 |
| 13 9 8 | 5 2 -16 | 136 4 7 |
| 6 7 13 |M19 39 4 | 5 8 2 |
:---------------------+---------------------+---------------------:
| 37 5 39 | 689 1 689 | 3679 2 4 |
| 137 6 139 | 2 4 5 | 8 379 39 |
| 4 8 2 | 69 7 3 | 169 5 169 |
:---------------------+---------------------+---------------------:
| 589 3 4 |-16789 5689 16789 | 2 179 189 |
| 589 1 7 | 3 589 2 | 4 6 89 |
| 89 2 6 | 4 89 M17 | 137 137 5 |
'---------------------'---------------------'---------------------' |
the marked M-wing gets rid of the 1 in r7c4 and r2c6. |
Just cruising around, trying to find out how people are using the m-wing term. How exactly does your deduction above work? |
I am not sure which hole this is, but I am taking a mulligan
i'll gladly take my 6th shot on the par 4 if I can put it home from 9 feet.
honestly, I am not sure what I saw now that I look again. but, I have changed the chain in my first step to
(1=7)r9c6 - (7)r9c7 = (7)r4c7 - (7=3)r4c1 - (3)r2c1 = (3-1)r3c3 = (1)r3c4; r7c4 and r2c6 is not 1
very nice puzzle Danny! |
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Tue Jan 13, 2009 7:54 pm Post subject: |
|
|
Code: | after basics, Empty Rectangle on <3>, 2x XY-Wing
*--------------------------------------------------------------------*
| 2 4 5 | 178 368 1678 | 1369 139 1369 |
| 13 9 8 | 5 2 16 | 136 4 7 |
| 6 7 13 | 19 39 4 | 5 8 2 |
|----------------------+----------------------+----------------------|
| 37 5 39 | 68 1 89 | 3679 2 4 |
| 17 6 139 | 2 4 5 | 8 379 39 |
| 4 8 2 | 69 7 3 | 169 5 169 |
|----------------------+----------------------+----------------------|
| 589 3 4 | 1789 5689 16789 | 2 179 189 |
| 589 1 7 | 3 589 2 | 4 6 89 |
| 89 2 6 | 4 89 17 | 137 137 5 |
*--------------------------------------------------------------------*
|
Welcome RonK!!! (Sorry for using my solver's chain notation. I know you can handle it.)
Quantity in braces is overall effectiveness of (generalized) M/W-Wing.
Code: | { 13} -1r9c6 7r9c6 7r4c7 7r5c1 1r2c1 [gM-Wing] <> 1 [r2c6]
{ 5} -9r5c3 9r4c3 9r7c6 9r8c9 [gM-Wing] <> 9 [r5c9]
{ 5} -3r5c9 9r5c9 9r6c4 9r3c5 3r1c5 [gM-Wing] <> 3 [r1c9]
{ 2} -3r4c3 9r4c3 9r6c4 9r3c5 3r3c3 [gM-Wing] <> 3 [r5c3]
{ 1} -8r9c5 9r9c5 9r4c6 8r4c4 [gM-Wing] <> 8 [r7c4]
{ 2} -3r4c3 9r4c3 9r7c6 9r8c9 3r5c9 [gW-Wing] <> 3 [r4c7],[r5c3]
|
Code: | gM-Wing: (Y=X)a - (X)b ... = (X-Y)r = (Y)s => eliminations in peers of [a] and [s] for (Y)
gW-Wing: (Y=X)a - (X)b = (X)c - (X=Y)d => eliminations in peers of [a] and [d] for (Y)
_____________________________________________________________________________________________
|
Note: The original definitions for M-Wing and W-Wing in this forum had additional strong links and bivalue cell restrictions that aren't present in the generalized versions. |
|
Back to top |
|
|
ronk
Joined: 07 May 2006 Posts: 398
|
Posted: Wed Jan 14, 2009 3:03 pm Post subject: |
|
|
daj95376 wrote: |
Code: | gM-Wing: (Y=X)a - (X)b ... = (X-Y)r = (Y)s => eliminations in peers of [a] and [s] for (Y)
gW-Wing: (Y=X)a - (X)b = (X)c - (X=Y)d => eliminations in peers of [a] and [d] for (Y)
_____________________________________________________________________________________________
|
Note: The original definitions for M-Wing and W-Wing in this forum had additional strong links and bivalue cell restrictions that aren't present in the generalized versions. |
Thanks for the example. So an m-wing is an x-cycle chain, with a xy bivalue tacked on one end, and a y-value bilocal on the other. That should be easy enough to remember.
However, I don't expect to be frequently using the term wing, even generalized, to a chain with more than three strong inferences. |
|
Back to top |
|
|
storm_norm
Joined: 18 Oct 2007 Posts: 1741
|
Posted: Wed Jan 14, 2009 7:36 pm Post subject: |
|
|
Quote: | However, I don't expect to be frequently using the term wing, even generalized, to a chain with more than three strong inferences |
sounds like a good argument against why xy-wings are still called xy-wings, when the dirty little secret is they are xy-chains.
I guess names just stick, imagine that |
|
Back to top |
|
|
|
|
You cannot post new topics in this forum You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot vote in polls in this forum
|
Powered by phpBB © 2001, 2005 phpBB Group
|