dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Set XY_03 Puzzle *** -- Chastized

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj
View previous topic :: View next topic  
Author Message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Wed Jun 17, 2009 4:29 pm    Post subject: Set XY_03 Puzzle *** -- Chastized Reply with quote

I recently joined the Eureka! forum just so I could add a UR solution to a puzzle where the initial solution was questioned as being an AUR. The UR Deduction thread was started by David P. Bird and he used an AICWENS, but he called it an AIC.

AICWENS: AIC with embedded network/structure (my definition)

Anyway, I was promptly chastized in that forum for using a UR solution approach that David felt was equivalent to a poke in the eye with a sharp stick. Okay, he's allowed his opinion. Besides, how often would I or anyone else run into a UR pattern where his deduction approach could be applied.

Well, ~!#$% if I didn't run into it on the very first XY_03 puzzle I was reviewing to post next. Darn!!!!!!!!!!!!!!!!!!!

Here's my puzzle with David's UR deduction approach -- instead of the W-Wing I'd originally considered.

Code:
 +-----------------------+
 | . . 7 | 6 8 . | 3 2 . |
 | . 4 . | . . 2 | 9 6 . |
 | 1 . . | . 3 . | 7 . 8 |
 |-------+-------+-------|
 | 3 . . | 8 . . | . . . |
 | 2 . 4 | . 9 . | . . . |
 | . 7 . | . . 3 | . 9 . |
 |-------+-------+-------|
 | 4 8 9 | . . . | 5 . . |
 | 7 3 . | . . 9 | . 8 . |
 | . . 6 | . . . | . . . |
 +-----------------------+

   c9b3  Locked Candidate 1              <> 1    [r467c9]
   c6b2  Locked Candidate 1              <> 4    [r4c6]

   c68   X-Wing                          <> 5    [r5c49]

   c5b8  Locked Candidate 1              <> 6    [r4c5]

   c8b8  Empty Rectangle                 <> 1    [r4c5]
   c4b9  Empty Rectangle                 <> 4    [r6c7]

         XY-Wing  [r4c8]/[r4c5]+[r6c7]   <> 2    [r4c7],[r6c45]
         XY-Wing  [r9c5]/[r4c5]+[r7c4]   <> 2    [r6c4],[r78c5]   extraneous

 r6  b5  Locked Candidate 1              <> 4    [r6c9]

Code:
 UR{ (1=45)r6c45 - (45)r8c45 } = (4)r9c5 - (4=1)r9c7 => [r6c7]<>1
 +-----------------------------------------------------+
 |  9    5    7    |  6    8    14   |  3    2    14   |
 |  8    4    3    |  15   7    2    |  9    6    15   |
 |  1    6    2    |  9    3    45   |  7    45   8    |
 |-----------------+-----------------+-----------------|
 |  3    9    5    |  8    2    16   |  146  14   7    |
 |  2    1    4    |  7    9    56   |  8    35   36   |
 |  6    7    8    | *145 *145  3    |  2-1  9    25   |
 |-----------------+-----------------+-----------------|
 |  4    8    9    |  12   16   7    |  5    13   236  |
 |  7    3    1    | *245 *456  9    |  246  8    246  |
 |  5    2    6    |  3    14   8    |  14   7    9    |
 +-----------------------------------------------------+
 # 34 eliminations remain

-or-

Code:
 W-Wing: 1/4 in r1c6,r4c8 connected by 4 in r3c68 => r4c6<>1
Back to top
View user's profile Send private message
ttt



Joined: 06 Dec 2008
Posts: 42
Location: vietnam

PostPosted: Wed Jun 17, 2009 6:21 pm    Post subject: Re: Set XY_03 Puzzle *** -- Chastized Reply with quote

daj95376 wrote:
Besides, how often would I or anyone else run into a UR pattern where his deduction approach could be applied.

Code:
 *--------------------------------------------------*
 | 9    5    7    | 6    8    14   | 3    2    14   |
 | 8    4    3    | 15   7    2    | 9    6    15   |
 | 1    6    2    | 9    3    45   | 7    45   8    |
 |----------------+----------------+----------------|
 | 3    9    5    | 8    2    16   | 146  14   7    |
 | 2    1    4    | 7    9    56   | 8    35   36   |
 | 6    7    8    | 145* 145* 3    | 12   9    25   |
 |----------------+----------------+----------------|
 | 4    8    9    | 12   16   7    | 5    13   236  |
 | 7    3    1    | 245* 456* 9    | 246  8    246  |
 | 5    2    6    | 3    14   8    | 14   7    9    |
 *--------------------------------------------------*

Hi Danny,
On my experience, the applying AURs based on viewing candidates – internal, external (on box, row, column) or both, that relates to other bivalue cells, bilocations or strong sets. On Eureka, you used internal and David used external (16)r3c8 & internal (2)r4c9 that could be written as AIC.
For example on your puzzle above: AUR(45)r45c68, we have some cases:
1- At least one of [(5)r5c6, (4)r9c5] must be true: (5)r5c6=(4)r9c5-(4)r6c5=(4)r6c4 => r6c4<>5
2- At least one of [(5)r6c9, (4)r8c79] must be true: (5)r6c9=(4)r8c79-(4=1)r9c7-(1=2)r6c7 => r6c9<>2
…..
If we use all internal candidate [(1)r6c45, (2)r8c4, (6)r8c5] then we must be presented as net (AAIC).

BTW, good news: Player's Forum just recovered... Very Happy
ttt
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Wed Jun 17, 2009 6:44 pm    Post subject: Reply with quote

just to add some other strong inferences on the UR {45}
and to add to what ttt already said...
these are strong inferences:
a... according to the UR45 either the xy-wing[(12)r7c4, (16)r7c5, (26)r8c45] is true or the 1's in r6c45 are true. which also leads to Danny's conclusion.
........interestingly this is the same as... if the 1's in r6c45 are not true, the remaining type 3 eliminates the 1 in r9c5
UR45[{xy-wing(12)r7c4, (16)r7c5, (26)r8c45} = (1)r6c45]...

b... according to the UR 45, either the 1's in r6c45 are true or if not, then by virtue of the remaining type 4, the 4 in r9c5 must be true, again, leads to Danny's conclusion.
UR45[(1)r6c45 = (4)r9c5]...
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Wed Jun 17, 2009 6:53 pm    Post subject: Reply with quote

Quote:
If we use all internal candidate [(1)r6c45, (2)r8c4, (6)r8c5] then we must be presented as net (AAIC).


in this case, you can use all of the internal candidates as I have shown with the xy-wing approach.

but i agree that there are cases where that is impossible without a net
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group