dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Vanhegan Fiendish September 27

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Sun Sep 27, 2009 3:03 pm    Post subject: Vanhegan Fiendish September 27 Reply with quote

I found today's Vanhegan Fiendish to be much more difficult than the normal puzzles. I was not able to find any VH moves after basics. I did find four xy-wings with extensions of one pincer but was not able to complete the puzzle!

Code:

 *-----------*
 |...|..2|..7|
 |...|37.|..5|
 |...|841|.6.|
 |---+---+---|
 |1..|...|.4.|
 |5.4|6.8|7.9|
 |.3.|...|..2|
 |---+---+---|
 |.8.|425|...|
 |2..|.83|...|
 |9..|1..|...|
 *-----------*


My four xy-wing moves are the following. Each is expressed as a chain where the first cell is a pincer, the second cell is the vertex, and the remaining cells are the extension of the second pincer.

(3=5)r9c3 - (5=4)r9c2 - (4=8)r9c9 - (8=6)r4c9 - (6)r4c23 = (6)r6c1 - (6=3)r7c1; r7c3<>3

(7=5)r8c8 - (5=6)r8c7 - (6)r78c9 = (6)r4c9 - (6=7)r4c2; r8c2<>7

(6=3)r7c1 - (3=5)r9c3 - (5=4)r9c2 - (4=8)r9c9 - (8=6)r4c9; r7c9<>6

(6=8)r4c9 - (8=4)r9c9 - (4=5)r9c2 - (5=9)r3c2 - (9-1)r2c2 - (1=6)r1c2; r4c2<>6

At this point I simply gave up!

Ted
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Sun Sep 27, 2009 6:52 pm    Post subject: Reply with quote

Code:
+-----------------------+----------+-----------------------+
| 36(48)  16     136(8) | 5  9   2 | 1(48)    1(8)    7    |
| (48)    19     12(8)  | 3  7   6 | 129(48)  129(8)  5    |
| 7       59     25     | 8  4   1 | 29       6       3    |
+-----------------------+----------+-----------------------+
| 1       67     67(8)  | 2  35  9 | 35       4       6(8) |
| 5       2      4      | 6  13  8 | 7        13      9    |
| 68      3      9      | 7  15  4 | 1568     15-8    2    |
+-----------------------+----------+-----------------------+
| 36      8      1367   | 4  2   5 | 369      379     16   |
| 2       14567  1567   | 9  8   3 | 56       57      146  |
| 9       45     35     | 1  6   7 | 2358     2358    48   |
+-----------------------+----------+-----------------------+

UR48[(8)r12c8 = (8)r12c3] - (8)r4c3 = (8)r4c9; r6c8 <> 8

Code:
+----------------------+----------+-------------------+
| 346   16       136   | 5  9   2 | 14     8    7     |
| (48)  (19)     12(8) | 3  7   6 | -1(4)  29   5     |
| 7     (59)     25    | 8  4   1 | 29     6    3     |
+----------------------+----------+-------------------+
| 1     67       67(8) | 2  35  9 | 35     4    (68)  |
| 5     2        4     | 6  13  8 | 7      13   9     |
| 68    3        9     | 7  15  4 | 68     15   2     |
+----------------------+----------+-------------------+
| 36    8        1367  | 4  2   5 | 369    379  (16)  |
| 2     1567(4)  1567  | 9  8   3 | 56     57   (146) |
| 9     (45)     35    | 1  6   7 | 2358   235  48    |
+----------------------+----------+-------------------+

(4)r2c7 = (4-8)r2c1 = (8)r2c3 - (8)r4c3 = (8-6)r4c9 = (hp(16)-4)r78c9 = (4)r8c2 - (4=5)r9c2 - (5=9)r3c2 - (9=1)r2c2; r2c7 <> 1
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Sun Sep 27, 2009 8:11 pm    Post subject: Reply with quote

storm_norm wrote:
Code:
+-----------------------+----------+-----------------------+
| 36(48)  16     136(8) | 5  9   2 | 1(48)    1(8)    7    |
| (48)    19     12(8)  | 3  7   6 | 129(48)  129(8)  5    |
| 7       59     25     | 8  4   1 | 29       6       3    |
+-----------------------+----------+-----------------------+
| 1       67     67(8)  | 2  35  9 | 35       4       6(8) |
| 5       2      4      | 6  13  8 | 7        13      9    |
| 68      3      9      | 7  15  4 | 1568     15-8    2    |
+-----------------------+----------+-----------------------+
| 36      8      1367   | 4  2   5 | 369      379     16   |
| 2       14567  1567   | 9  8   3 | 56       57      146  |
| 9       45     35     | 1  6   7 | 2358     2358    48   |
+-----------------------+----------+-----------------------+


UR48[(8)r12c8 = (8)r12c3] - (8)r4c3 = (8)r4c9; r6c8 <> 8

Code:
+----------------------+----------+-------------------+
| 346   16       136   | 5  9   2 | 14     8    7     |
| (48)  (19)     12(8) | 3  7   6 | -1(4)  29   5     |
| 7     (59)     25    | 8  4   1 | 29     6    3     |
+----------------------+----------+-------------------+
| 1     67       67(8) | 2  35  9 | 35     4    (68)  |
| 5     2        4     | 6  13  8 | 7      13   9     |
| 68    3        9     | 7  15  4 | 68     15   2     |
+----------------------+----------+-------------------+
| 36    8        1367  | 4  2   5 | 369    379  (16)  |
| 2     1567(4)  1567  | 9  8   3 | 56     57   (146) |
| 9     (45)     35    | 1  6   7 | 2358   235  48    |
+----------------------+----------+-------------------+

(4)r2c7 = (4-8)r2c1 = (8)r2c3 - (8)r4c3 = (8-6)r4c9 = (hp(16)-4)r78c9 = (4)r8c2 - (4=5)r9c2 - (5=9)r3c2 - (9=1)r2c2; r2c7 <> 1

Wow! Shocked
Nice work Norm
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sun Sep 27, 2009 8:15 pm    Post subject: Reply with quote

Norm,

I don't believe that this inference sequence
(8-6)r4c9 = (hp(16)-4)r78c9 = (4)r8c2
is valid. This is obscured by the lack of clear notation for such situations. Understanding the inferences depends upon how you conceive of the 16 pair.

First, it can be considered as a group. I assume this is how you see it since parentheses are generally used for groups. A group is false if all its members are false and true in all other cases. So, the weak inference
(hp(16)-4)r78c9
is not valid with (16) considered as a group since 14 and 46 both result in both sides of the inference being true. Alternately, you can realize that if the group were false, i.e. both <1> and <6> are false, the ALS is starved and there is no valid solution to the puzzle!

Second, it can be considered as a set, which is true if all its members are true and false in all other cases. I rarely see sets used in AICs so I'm not aware of a clear notation convention. I use braces to denote a set:
(hp{16}-4)r78c9
Considered as a set, the weak inference within the ALS is valid. However, the strong inference
(6)r4c9 = (hp{16})r78c9
is not valid. The set {16} is false if the ALS collapses to 46. Thus, both sides of the inference can be false.

As you might tell from this discussion, working with sets as AIC "nodes" can be confusing and requires care, which is probably why it's not much seen. And when getting creative with groups, care must be taken to assure you aren't unintentionally treating a group as a set. Working explicitly with sets in AICs requires carefully working out the possible valid inferences. For instance, an ALS weak inference could be exploited with the following valid structure (given a suitable grid ... the one in this thread does not offer this structure):
... - Group(16)=ALS[Set{16}-4]= ...
This would occur if the group and set shared a house and there were no other instances of <1> or <6> in the house.

For now, just remember: a grouped weak inference within an ALS is not valid.
Back to top
View user's profile Send private message Visit poster's website
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Sun Sep 27, 2009 9:04 pm    Post subject: Reply with quote

Asellus wrote:
Norm,

I don't believe that this inference sequence
(8-6)r4c9 = (hp(16)-4)r78c9 = (4)r8c2
is valid.


This will work also without the hp:
Code:
 *--------------------------------------------------------------------*
 | 346    16     136    | 5      9      2      | 14     8      7      |
 | 48     19     128    | 3      7      6      | 14     29     5      |
 | 7      59     25     | 8      4      1      | 29     6      3      |
 |----------------------+----------------------+----------------------|
 | 1      67     678    | 2      35     9      | 35     4      68     |
 | 5      2      4      | 6      13     8      | 7      13     9      |
 | 68     3      9      | 7      15     4      | 68     15     2      |
 |----------------------+----------------------+----------------------|
 | 36     8      1367   | 4      2      5      | 369    379    16     |
 | 2      14567  1567   | 9      8      3      | 56     57     146    |
 | 9      45     35     | 1      6      7      | 2358   235    48     |
 *--------------------------------------------------------------------*
(4=1)r2c7-(1=9)r2c2-(9=2)r2c8-(2)r9c8=(2-8)r9c7=(8)r6c7-(8)r6c1=(8-4)r2c1=(4)r1c1-(4)r1c7
=> r1c7,r2c1<>4
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Sun Sep 27, 2009 9:15 pm    Post subject: Reply with quote

hmm, ok, so maybe writing out all the inferences?

Code:
(6)r4c9 = [(6-1)r7c9 = (1-6)r8c9] - (4)r8c9
          |---hidden pair-------|
Back to top
View user's profile Send private message
Steve R



Joined: 24 Oct 2005
Posts: 289
Location: Birmingham, England

PostPosted: Sun Sep 27, 2009 9:17 pm    Post subject: Reply with quote

In traditional style the implication snippet would be:

r4c9 ≠ 6 => r78c9 = (16) => r8c2 = 4

This looks OK to me.

Steve
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sun Sep 27, 2009 9:38 pm    Post subject: Reply with quote

My bad! Embarassed

I didn't notice that the <1>s in c9 are conjugate. Thus, Norm really is working with a Hidden Pair and, only coincidentally, with an ALS. I was focused on the ALS. IF those <1>s were not conjugate (i.e. if there were other <1>s in c9) then what I wrote would be correct.

And, yes, I definitely think it is notationally clearer (at least for me Wink ) to write out the strong inference between the <1>s explicitly.
Back to top
View user's profile Send private message Visit poster's website
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Mon Sep 28, 2009 9:09 pm    Post subject: Reply with quote

arkietech wrote:
Asellus wrote:
Norm,

I don't believe that this inference sequence
(8-6)r4c9 = (hp(16)-4)r78c9 = (4)r8c2
is valid.


This will work also without the hp:
Code:
 *--------------------------------------------------------------------*
 | 346    16     136    | 5      9      2      | 14     8      7      |
 | 48     19     128    | 3      7      6      | 14     29     5      |
 | 7      59     25     | 8      4      1      | 29     6      3      |
 |----------------------+----------------------+----------------------|
 | 1      67     678    | 2      35     9      | 35     4      68     |
 | 5      2      4      | 6      13     8      | 7      13     9      |
 | 68     3      9      | 7      15     4      | 68     15     2      |
 |----------------------+----------------------+----------------------|
 | 36     8      1367   | 4      2      5      | 369    379    16     |
 | 2      14567  1567   | 9      8      3      | 56     57     146    |
 | 9      45     35     | 1      6      7      | 2358   235    48     |
 *--------------------------------------------------------------------*
(4=1)r2c7-(1=9)r2c2-(9=2)r2c8-(2)r9c8=(2-8)r9c7=(8)r6c7-(8)r6c1=(8-4)r2c1=(4)r1c1-(4)r1c7
=> r1c7,r2c1<>4

also good, Dan
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Tue Sep 29, 2009 3:44 am    Post subject: Reply with quote

Norm,

Your UR elimination could be even more concise:

UR48[(8)r1c6 = (8)r12c8]; r6c8 <> 8
Back to top
View user's profile Send private message Visit poster's website
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group