dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Set XY_03 Puzzle 040

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj
View previous topic :: View next topic  
Author Message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Fri Oct 16, 2009 3:39 am    Post subject: Set XY_03 Puzzle 040 Reply with quote

Code:
XY puzzles can be solved using these techniques:

Basics:  Naked/Hidden Single, Naked Pair/Triple, Locked Candidates 1/2
Basics+: Naked Quad, Hidden Pair/Triple/Quad
VH:      BUG+1, UR Type 1, X-Wing, XY-Wing
VH+:     2-String Kite, Empty Rectangle, Remote Pair, Skyscraper,
         XYZ-Wing, finned X-Wing, UR Type 2/4
XY:      gM-Wing, W-Wing, XY-Chain, BUG+2, BUG+3, other URs

Code:
 +-----------------------+
 | . . . | 7 4 . | 2 . . |
 | . 6 8 | 3 . 2 | . 4 5 |
 | . 2 . | . . . | 6 . 3 |
 |-------+-------+-------|
 | 2 4 . | 5 8 . | . . . |
 | 6 . . | 9 . . | . 2 8 |
 | . 5 . | . . 7 | . . . |
 |-------+-------+-------|
 | 5 . 6 | . . . | . . . |
 | . 7 . | . 2 . | . 5 . |
 | . 3 2 | . 7 . | . . 6 |
 +-----------------------+

Play this puzzle online at the Daily Sudoku site


Last edited by daj95376 on Fri Oct 16, 2009 10:16 am; edited 1 time in total
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Fri Oct 16, 2009 6:48 am    Post subject: Reply with quote

there are two w-wings on the candidates {3,9} that can be extended and each will crack the puzzle.
in picture form

this one uses the strong link on 3's in column 8


and this one uses the strong link on 3 in row 8...
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Fri Oct 16, 2009 1:28 pm    Post subject: Reply with quote

Nice work Norm! Very Happy
Another way
Code:
 *-----------------------------------------------------------*
 | 3     9     5     | 7     4     6     | 2     8     1     |
 | 17    6     8     | 3     19    2     | 79    4     5     |
 | 147   2     14    | 18    5     89    | 6     79    3     |
 |-------------------+-------------------+-------------------|
 | 2     4     39    | 5     8     1     | 39    6     7     |
 | 6     1     7     | 9     3     4     | 5     2     8     |
 | 8     5     39    | 2     6     7     | 1349  139   49    |
 |-------------------+-------------------+-------------------|
 | 5     8     6     | 14    19    39    | 1347  137   2     |
 | 149   7     14    | 6     2     38    | 38    5     49    |
 | 49    3     2     | 148   7     5     | 1489  19    6     |
 *-----------------------------------------------------------*

XY-Chain
(1=8)r3c4-(8=9)r3c6-(9=3)r7c6(3=8)r8c6-(8=3)r8c7-(3=9)r4c7-(9=7)-r2c7-(7=1)r2c1
 => r2c5,r3c13<>1 singles remain
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Fri Oct 16, 2009 5:05 pm    Post subject: Reply with quote

Quote:
Nice work Norm

you as well.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Fri Oct 16, 2009 5:08 pm    Post subject: Reply with quote

arkietech wrote:
Code:
 XY-Chain
(1=8)r3c4-(8=9)r3c6-(9=3)r7c6(3=8)r8c6-(8=3)r8c7-(3=9)r4c7-(9=7)r2c7-(7=1)r2c1
 => r2c5,r3c13<>1 singles remain


I like Eureka notation because it is a nice way to see and verify all of the strong/weak inferences. But, there is a lot of redundant information being recorded -- especially for XY-Chains.

Although I plan to upgrade my solver's output to match Eureka notation (so I won't have to manually alter it for listing to the forums), I'll miss the shorthand notation it uses now.

Code:
 -1r3c4 8r3c4 9r3c6 3r7c6 8r8c6 3r8c7 9r4c7 7r2c7 1r2c1 <> 1    r2c5,r3c13
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Fri Oct 16, 2009 6:15 pm    Post subject: Reply with quote

Although there are a couple of URs that reduce the puzzle (included below), all that's needed is the 6-cell gM-Wing (XY-Chain) to crack the puzzle in one step.

Code:
 after basics
 *--------------------------------------------------------------*
 |  3     9     5     |  7     4     6     |  2     8     1     |
 |  17    6     8     |  3     19    2     |  79    4     5     |
 |  147   2     14    |  18    5     89    |  6     79    3     |
 |--------------------+--------------------+--------------------|
 |  2     4     39    |  5     8     1     |  39    6     7     |
 |  6     1     7     |  9     3     4     |  5     2     8     |
 |  8     5     39    |  2     6     7     |  1349  139   49    |
 |--------------------+--------------------+--------------------|
 |  5     8     6     |  14    19    39    |  1347  137   2     |
 |  149   7     14    |  6     2     38    |  38    5     49    |
 |  49    3     2     |  148   7     5     |  1489  19    6     |
 *--------------------------------------------------------------*

Code:
 r46c37  <39> UR Type 1                  <> 39   [r6c7]

 *** UR 2x bivalue cells:   <14> [r38c13]   cand count =  4/2,2,3,3

 strong link on <4> in [r3] +
 strong link on <1> in [r8] => [r3c3]=4 and [r8c3]=1
 +--------------------------------------------------------------+
 |  3     9     5     |  7     4     6     |  2     8     1     |
 |  17    6     8     |  3     19    2     |  79    4     5     |
 | *14+7  2    *14    |  18    5     89    |  6     79    3     |
 |--------------------+--------------------+--------------------|
 |  2     4     39    |  5     8     1     |  39    6     7     |
 |  6     1     7     |  9     3     4     |  5     2     8     |
 |  8     5     39    |  2     6     7     |  14    139   49    |
 |--------------------+--------------------+--------------------|
 |  5     8     6     |  14    19    39    |  1347  137   2     |
 | *14+9  7    *14    |  6     2     38    |  38    5     49    |
 |  49    3     2     |  148   7     5     |  1489  19    6     |
 +--------------------------------------------------------------+
 # 37 eliminations remain

 (3=9)r4c7 - r2c7 = r2c5 - r7c5 = (9-3)r7c6 = (3)r8c6  [gM-Wing ]  <> 3    r8c7
 +--------------------------------------------------------------+
 |  3     9     5     |  7     4     6     |  2     8     1     |
 |  17    6     8     |  3    #19    2     | #79    4     5     |
 |  17    2     4     |  18    5     89    |  6     79    3     |
 |--------------------+--------------------+--------------------|
 |  2     4     39    |  5     8     1     | *39    6     7     |
 |  6     1     7     |  9     3     4     |  5     2     8     |
 |  8     5     39    |  2     6     7     |  14    139   49    |
 |--------------------+--------------------+--------------------|
 |  5     8     6     |  14   @19   @39    |  1347  137   2     |
 |  49    7     1     |  6     2    *38    |  8-3   5     49    |
 |  49    3     2     |  148   7     5     |  1489  19    6     |
 +--------------------------------------------------------------+
 # 33 eliminations remain
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Fri Oct 16, 2009 6:45 pm    Post subject: Reply with quote

Danny,
nice gm-wing extending the inner 9's

using that UR you referenced UR(14)r38c13. there are strong links on the 1 in r3c4 and the 4 in r8c9


(3=8)r8c6 - (8)r9c4 = (8)r3c4 - UR14[(1)r3c4 = (4)r8c9] - (9)r8c9 = (9)r6c9 - (9=3)r4c7; r8c7 <> 3
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Tue Oct 20, 2009 3:04 pm    Post subject: Reply with quote

I just realized that this was a new puzzle (and so is NR_069).

Anyway, I found this chain while looking for an xy-wing extension; it also solves the puzzle in one step.

(9)r2c7 - (9=3)r4c7 - (3)r6c8 = (3)r7c8 - (3=9)r7c6 - (9)r7c5 = (9)r2c5; r2c7<>9

Ted
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group