| View previous topic :: View next topic   | 
	
	
	
		| Author | 
		Message | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Fri Oct 16, 2009 3:39 am    Post subject: Set XY_03 Puzzle 040 | 
				     | 
			 
			
				
  | 
			 
			
				 	  | Code: | 	 		  XY puzzles can be solved using these techniques:
 
 
Basics:  Naked/Hidden Single, Naked Pair/Triple, Locked Candidates 1/2
 
Basics+: Naked Quad, Hidden Pair/Triple/Quad
 
VH:      BUG+1, UR Type 1, X-Wing, XY-Wing
 
VH+:     2-String Kite, Empty Rectangle, Remote Pair, Skyscraper,
 
         XYZ-Wing, finned X-Wing, UR Type 2/4
 
XY:      gM-Wing, W-Wing, XY-Chain, BUG+2, BUG+3, other URs
 
 | 	  
 
 	  | Code: | 	 		   +-----------------------+
 
 | . . . | 7 4 . | 2 . . |
 
 | . 6 8 | 3 . 2 | . 4 5 |
 
 | . 2 . | . . . | 6 . 3 |
 
 |-------+-------+-------|
 
 | 2 4 . | 5 8 . | . . . |
 
 | 6 . . | 9 . . | . 2 8 |
 
 | . 5 . | . . 7 | . . . |
 
 |-------+-------+-------|
 
 | 5 . 6 | . . . | . . . |
 
 | . 7 . | . 2 . | . 5 . |
 
 | . 3 2 | . 7 . | . . 6 |
 
 +-----------------------+
 
 | 	  
 
Play this puzzle online at the Daily Sudoku site
  Last edited by daj95376 on Fri Oct 16, 2009 10:16 am; edited 1 time in total | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Fri Oct 16, 2009 6:48 am    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				there are two w-wings on the candidates {3,9} that can be extended and each will crack the puzzle.
 
in picture form
 
 
this one uses the strong link on 3's in column 8
 
 
 
 
and this one uses the strong link on 3 in row 8...
 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		arkietech
 
 
  Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
  | 
		
			
				 Posted: Fri Oct 16, 2009 1:28 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Nice work Norm!   
 
Another way
 
 	  | Code: | 	 		   *-----------------------------------------------------------*
 
 | 3     9     5     | 7     4     6     | 2     8     1     |
 
 | 17    6     8     | 3     19    2     | 79    4     5     |
 
 | 147   2     14    | 18    5     89    | 6     79    3     |
 
 |-------------------+-------------------+-------------------|
 
 | 2     4     39    | 5     8     1     | 39    6     7     |
 
 | 6     1     7     | 9     3     4     | 5     2     8     |
 
 | 8     5     39    | 2     6     7     | 1349  139   49    |
 
 |-------------------+-------------------+-------------------|
 
 | 5     8     6     | 14    19    39    | 1347  137   2     |
 
 | 149   7     14    | 6     2     38    | 38    5     49    |
 
 | 49    3     2     | 148   7     5     | 1489  19    6     |
 
 *-----------------------------------------------------------*
 
 
XY-Chain
 
(1=8)r3c4-(8=9)r3c6-(9=3)r7c6(3=8)r8c6-(8=3)r8c7-(3=9)r4c7-(9=7)-r2c7-(7=1)r2c1
 
 => r2c5,r3c13<>1 singles remain
 
 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Fri Oct 16, 2009 5:05 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				
 
you as well. | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Fri Oct 16, 2009 5:08 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				 	  | arkietech wrote: | 	 		   	  | Code: | 	 		   XY-Chain
 
(1=8)r3c4-(8=9)r3c6-(9=3)r7c6(3=8)r8c6-(8=3)r8c7-(3=9)r4c7-(9=7)r2c7-(7=1)r2c1
 
 => r2c5,r3c13<>1 singles remain
 
 | 	  
 
 | 	  
 
I like Eureka notation because it is a nice way to see and verify all of the strong/weak inferences. But, there is a lot of redundant information being recorded -- especially for XY-Chains.
 
 
Although I plan to upgrade my solver's output to match Eureka notation (so I won't have to manually alter it for listing to the forums), I'll miss the shorthand notation it uses now.
 
 
 	  | Code: | 	 		   -1r3c4 8r3c4 9r3c6 3r7c6 8r8c6 3r8c7 9r4c7 7r2c7 1r2c1 <> 1    r2c5,r3c13
 
 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		daj95376
 
 
  Joined: 23 Aug 2008 Posts: 3854
 
  | 
		
			
				 Posted: Fri Oct 16, 2009 6:15 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Although there are a couple of URs that reduce the puzzle (included below), all that's needed is the 6-cell gM-Wing (XY-Chain) to crack the puzzle in one step.
 
 
 	  | Code: | 	 		   after basics
 
 *--------------------------------------------------------------*
 
 |  3     9     5     |  7     4     6     |  2     8     1     |
 
 |  17    6     8     |  3     19    2     |  79    4     5     |
 
 |  147   2     14    |  18    5     89    |  6     79    3     |
 
 |--------------------+--------------------+--------------------|
 
 |  2     4     39    |  5     8     1     |  39    6     7     |
 
 |  6     1     7     |  9     3     4     |  5     2     8     |
 
 |  8     5     39    |  2     6     7     |  1349  139   49    |
 
 |--------------------+--------------------+--------------------|
 
 |  5     8     6     |  14    19    39    |  1347  137   2     |
 
 |  149   7     14    |  6     2     38    |  38    5     49    |
 
 |  49    3     2     |  148   7     5     |  1489  19    6     |
 
 *--------------------------------------------------------------*
 
 | 	  
 
 	  | Code: | 	 		   r46c37  <39> UR Type 1                  <> 39   [r6c7]
 
 
 *** UR 2x bivalue cells:   <14> [r38c13]   cand count =  4/2,2,3,3
 
 
 strong link on <4> in [r3] +
 
 strong link on <1> in [r8] => [r3c3]=4 and [r8c3]=1
 
 +--------------------------------------------------------------+
 
 |  3     9     5     |  7     4     6     |  2     8     1     |
 
 |  17    6     8     |  3     19    2     |  79    4     5     |
 
 | *14+7  2    *14    |  18    5     89    |  6     79    3     |
 
 |--------------------+--------------------+--------------------|
 
 |  2     4     39    |  5     8     1     |  39    6     7     |
 
 |  6     1     7     |  9     3     4     |  5     2     8     |
 
 |  8     5     39    |  2     6     7     |  14    139   49    |
 
 |--------------------+--------------------+--------------------|
 
 |  5     8     6     |  14    19    39    |  1347  137   2     |
 
 | *14+9  7    *14    |  6     2     38    |  38    5     49    |
 
 |  49    3     2     |  148   7     5     |  1489  19    6     |
 
 +--------------------------------------------------------------+
 
 # 37 eliminations remain
 
 
 (3=9)r4c7 - r2c7 = r2c5 - r7c5 = (9-3)r7c6 = (3)r8c6  [gM-Wing ]  <> 3    r8c7
 
 +--------------------------------------------------------------+
 
 |  3     9     5     |  7     4     6     |  2     8     1     |
 
 |  17    6     8     |  3    #19    2     | #79    4     5     |
 
 |  17    2     4     |  18    5     89    |  6     79    3     |
 
 |--------------------+--------------------+--------------------|
 
 |  2     4     39    |  5     8     1     | *39    6     7     |
 
 |  6     1     7     |  9     3     4     |  5     2     8     |
 
 |  8     5     39    |  2     6     7     |  14    139   49    |
 
 |--------------------+--------------------+--------------------|
 
 |  5     8     6     |  14   @19   @39    |  1347  137   2     |
 
 |  49    7     1     |  6     2    *38    |  8-3   5     49    |
 
 |  49    3     2     |  148   7     5     |  1489  19    6     |
 
 +--------------------------------------------------------------+
 
 # 33 eliminations remain
 
 | 	 
  | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		storm_norm
 
 
  Joined: 18 Oct 2007 Posts: 1741
 
  | 
		
			
				 Posted: Fri Oct 16, 2009 6:45 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				Danny,
 
nice gm-wing extending the inner 9's
 
 
using that UR you referenced UR(14)r38c13.  there are strong links on the 1 in r3c4 and the 4 in r8c9
 
 
 
 
(3=8)r8c6 - (8)r9c4 = (8)r3c4 - UR14[(1)r3c4 = (4)r8c9] - (9)r8c9 = (9)r6c9 - (9=3)r4c7; r8c7 <> 3 | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		tlanglet
 
 
  Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
  | 
		
			
				 Posted: Tue Oct 20, 2009 3:04 pm    Post subject:  | 
				     | 
			 
			
				
  | 
			 
			
				I just realized that this was a new puzzle (and so is NR_069).
 
 
Anyway, I found this chain while looking for an xy-wing extension; it also solves the puzzle in one step.
 
 
(9)r2c7 - (9=3)r4c7 - (3)r6c8 = (3)r7c8 - (3=9)r7c6 - (9)r7c5 = (9)r2c5; r2c7<>9
 
 
Ted | 
			 
		  | 
	
	
		| Back to top | 
		 | 
	
	
		  | 
	
	
		 |