View previous topic :: View next topic |
Author |
Message |
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Fri Oct 16, 2009 3:39 am Post subject: Set XY_03 Puzzle 040 |
|
|
Code: | XY puzzles can be solved using these techniques:
Basics: Naked/Hidden Single, Naked Pair/Triple, Locked Candidates 1/2
Basics+: Naked Quad, Hidden Pair/Triple/Quad
VH: BUG+1, UR Type 1, X-Wing, XY-Wing
VH+: 2-String Kite, Empty Rectangle, Remote Pair, Skyscraper,
XYZ-Wing, finned X-Wing, UR Type 2/4
XY: gM-Wing, W-Wing, XY-Chain, BUG+2, BUG+3, other URs
|
Code: | +-----------------------+
| . . . | 7 4 . | 2 . . |
| . 6 8 | 3 . 2 | . 4 5 |
| . 2 . | . . . | 6 . 3 |
|-------+-------+-------|
| 2 4 . | 5 8 . | . . . |
| 6 . . | 9 . . | . 2 8 |
| . 5 . | . . 7 | . . . |
|-------+-------+-------|
| 5 . 6 | . . . | . . . |
| . 7 . | . 2 . | . 5 . |
| . 3 2 | . 7 . | . . 6 |
+-----------------------+
|
Play this puzzle online at the Daily Sudoku site
Last edited by daj95376 on Fri Oct 16, 2009 10:16 am; edited 1 time in total |
|
Back to top |
|
|
storm_norm
Joined: 18 Oct 2007 Posts: 1741
|
Posted: Fri Oct 16, 2009 6:48 am Post subject: |
|
|
there are two w-wings on the candidates {3,9} that can be extended and each will crack the puzzle.
in picture form
this one uses the strong link on 3's in column 8
and this one uses the strong link on 3 in row 8...
|
|
Back to top |
|
|
arkietech
Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
|
Posted: Fri Oct 16, 2009 1:28 pm Post subject: |
|
|
Nice work Norm!
Another way
Code: | *-----------------------------------------------------------*
| 3 9 5 | 7 4 6 | 2 8 1 |
| 17 6 8 | 3 19 2 | 79 4 5 |
| 147 2 14 | 18 5 89 | 6 79 3 |
|-------------------+-------------------+-------------------|
| 2 4 39 | 5 8 1 | 39 6 7 |
| 6 1 7 | 9 3 4 | 5 2 8 |
| 8 5 39 | 2 6 7 | 1349 139 49 |
|-------------------+-------------------+-------------------|
| 5 8 6 | 14 19 39 | 1347 137 2 |
| 149 7 14 | 6 2 38 | 38 5 49 |
| 49 3 2 | 148 7 5 | 1489 19 6 |
*-----------------------------------------------------------*
XY-Chain
(1=8)r3c4-(8=9)r3c6-(9=3)r7c6(3=8)r8c6-(8=3)r8c7-(3=9)r4c7-(9=7)-r2c7-(7=1)r2c1
=> r2c5,r3c13<>1 singles remain
|
|
|
Back to top |
|
|
storm_norm
Joined: 18 Oct 2007 Posts: 1741
|
Posted: Fri Oct 16, 2009 5:05 pm Post subject: |
|
|
you as well. |
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Fri Oct 16, 2009 5:08 pm Post subject: |
|
|
arkietech wrote: | Code: | XY-Chain
(1=8)r3c4-(8=9)r3c6-(9=3)r7c6(3=8)r8c6-(8=3)r8c7-(3=9)r4c7-(9=7)r2c7-(7=1)r2c1
=> r2c5,r3c13<>1 singles remain
|
|
I like Eureka notation because it is a nice way to see and verify all of the strong/weak inferences. But, there is a lot of redundant information being recorded -- especially for XY-Chains.
Although I plan to upgrade my solver's output to match Eureka notation (so I won't have to manually alter it for listing to the forums), I'll miss the shorthand notation it uses now.
Code: | -1r3c4 8r3c4 9r3c6 3r7c6 8r8c6 3r8c7 9r4c7 7r2c7 1r2c1 <> 1 r2c5,r3c13
|
|
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Fri Oct 16, 2009 6:15 pm Post subject: |
|
|
Although there are a couple of URs that reduce the puzzle (included below), all that's needed is the 6-cell gM-Wing (XY-Chain) to crack the puzzle in one step.
Code: | after basics
*--------------------------------------------------------------*
| 3 9 5 | 7 4 6 | 2 8 1 |
| 17 6 8 | 3 19 2 | 79 4 5 |
| 147 2 14 | 18 5 89 | 6 79 3 |
|--------------------+--------------------+--------------------|
| 2 4 39 | 5 8 1 | 39 6 7 |
| 6 1 7 | 9 3 4 | 5 2 8 |
| 8 5 39 | 2 6 7 | 1349 139 49 |
|--------------------+--------------------+--------------------|
| 5 8 6 | 14 19 39 | 1347 137 2 |
| 149 7 14 | 6 2 38 | 38 5 49 |
| 49 3 2 | 148 7 5 | 1489 19 6 |
*--------------------------------------------------------------*
|
Code: | r46c37 <39> UR Type 1 <> 39 [r6c7]
*** UR 2x bivalue cells: <14> [r38c13] cand count = 4/2,2,3,3
strong link on <4> in [r3] +
strong link on <1> in [r8] => [r3c3]=4 and [r8c3]=1
+--------------------------------------------------------------+
| 3 9 5 | 7 4 6 | 2 8 1 |
| 17 6 8 | 3 19 2 | 79 4 5 |
| *14+7 2 *14 | 18 5 89 | 6 79 3 |
|--------------------+--------------------+--------------------|
| 2 4 39 | 5 8 1 | 39 6 7 |
| 6 1 7 | 9 3 4 | 5 2 8 |
| 8 5 39 | 2 6 7 | 14 139 49 |
|--------------------+--------------------+--------------------|
| 5 8 6 | 14 19 39 | 1347 137 2 |
| *14+9 7 *14 | 6 2 38 | 38 5 49 |
| 49 3 2 | 148 7 5 | 1489 19 6 |
+--------------------------------------------------------------+
# 37 eliminations remain
(3=9)r4c7 - r2c7 = r2c5 - r7c5 = (9-3)r7c6 = (3)r8c6 [gM-Wing ] <> 3 r8c7
+--------------------------------------------------------------+
| 3 9 5 | 7 4 6 | 2 8 1 |
| 17 6 8 | 3 #19 2 | #79 4 5 |
| 17 2 4 | 18 5 89 | 6 79 3 |
|--------------------+--------------------+--------------------|
| 2 4 39 | 5 8 1 | *39 6 7 |
| 6 1 7 | 9 3 4 | 5 2 8 |
| 8 5 39 | 2 6 7 | 14 139 49 |
|--------------------+--------------------+--------------------|
| 5 8 6 | 14 @19 @39 | 1347 137 2 |
| 49 7 1 | 6 2 *38 | 8-3 5 49 |
| 49 3 2 | 148 7 5 | 1489 19 6 |
+--------------------------------------------------------------+
# 33 eliminations remain
|
|
|
Back to top |
|
|
storm_norm
Joined: 18 Oct 2007 Posts: 1741
|
Posted: Fri Oct 16, 2009 6:45 pm Post subject: |
|
|
Danny,
nice gm-wing extending the inner 9's
using that UR you referenced UR(14)r38c13. there are strong links on the 1 in r3c4 and the 4 in r8c9
(3=8)r8c6 - (8)r9c4 = (8)r3c4 - UR14[(1)r3c4 = (4)r8c9] - (9)r8c9 = (9)r6c9 - (9=3)r4c7; r8c7 <> 3 |
|
Back to top |
|
|
tlanglet
Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
|
Posted: Tue Oct 20, 2009 3:04 pm Post subject: |
|
|
I just realized that this was a new puzzle (and so is NR_069).
Anyway, I found this chain while looking for an xy-wing extension; it also solves the puzzle in one step.
(9)r2c7 - (9=3)r4c7 - (3)r6c8 = (3)r7c8 - (3=9)r7c6 - (9)r7c5 = (9)r2c5; r2c7<>9
Ted |
|
Back to top |
|
|
|