dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Puzzle 10/06/05: (C) Advanced

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj
View previous topic :: View next topic  
Author Message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sat Jun 05, 2010 9:22 pm    Post subject: Puzzle 10/06/05: (C) Advanced Reply with quote

Code:
 +-----------------------+
 | 6 . 4 | 3 . 7 | . . . |
 | . 5 . | . . . | . . . |
 | 3 . 2 | 4 . . | 1 . . |
 |-------+-------+-------|
 | 1 . 8 | . . 3 | . . 6 |
 | . . . | . 1 . | . 9 . |
 | 9 . . | 6 . . | 2 . . |
 |-------+-------+-------|
 | . . 1 | . . 4 | . 2 3 |
 | . . . | . 3 . | 9 1 . |
 | . . . | 2 . . | 7 . 4 |
 +-----------------------+

Play this puzzle online at the Daily Sudoku site

===== ===== ===== ===== ===== ===== ===== =====

After basics and ignoring the finned X-Wing:

Code:
 +--------------------------------------------------------------+
 |  6     1     4     |  3     2     7     | *58   *58    9     |
 |  78    5     79    |  1     68    689   |  34    34    2     |
 |  3     89    2     |  4     58    589   |  1     6     7     |
 |--------------------+--------------------+--------------------|
 |  1     2     8     |  579   4579  3     |  45    47    6     |
 |  4     367   3567  |  57    1     2     | *58+3  9    *58    |
 |  9     37    357   |  6     4578  58    |  2     347   1     |
 |--------------------+--------------------+--------------------|
 | *58+7  789   1     | *58+79 579   4     |  6     2     3     |
 |  2     4     67    | *58+7  3     56    |  9     1    *58    |
 | *58    369   369   |  2     69    1     |  7    *58    4     |
 +--------------------------------------------------------------+
 # 59 eliminations remain

Play this puzzle online at the Daily Sudoku site

One option is to use the <58> DP (*) to crack it. ___ Laughing ___
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Sat Jun 05, 2010 10:01 pm    Post subject: Reply with quote

Sadly I am still at DP bootcamp .. but fwiw this does it in one step

Quote:
xy-chain (7=8)r2c1-(8=5)r9c1-(5=8)r9c8-(8=5)r8c9-(5=6)r8c6-(6=7)r8c3; r2c3<>7, r7c1<>7


Danny, look forward to seeing this play out as I need to learn this stuff!
Back to top
View user's profile Send private message
Mogulmeister



Joined: 03 May 2007
Posts: 1151

PostPosted: Sat Jun 05, 2010 10:15 pm    Post subject: Reply with quote

I'd love it if you could talk us through the DP diagram Danny. Like Peter, I'm on the floor giving the drill sergeant 20.

A cowardly (but different) single step xy chain is all I can offer.

Quote:
Pincers at r2c3 and r9c5 eliminate the 9 at r9c3 thus:

(9=7)r2c3-(7=8)r2c1-(8=6)r2c5-(6=9)r9c5; r9c3 <>9
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sat Jun 05, 2010 11:05 pm    Post subject: Reply with quote

I was not serious about the <58> DP. That's why the "laughing" emoticon!!! I just wanted everyone to know that I found the DP.

Okay, that said, I feel that I must justify myself. It shouldn't be too difficult. Laughing _

Code:
<58> DP (*)  =>  r5c7=3 or r7c1|r7c4|r8c4=7 or r7c4=9

(3)r5c7                                          - (3)r2c7
(7)r7c1 - r7c45 = r8c4 - (7=5)r5c4 - (58=3)r5c78 - (3)r2c7
(7)r7c4                - (7=5)r5c4 - (58=3)r5c78 - (3)r2c7
(7)r8c4                - (7=5)r5c4 - (58=3)r5c78 - (3)r2c7

         --------------------------------------
       /                                        \
(9)r7c4 - (9=6)r9c5 - (6=8)r2c5 - r2c1 = (8)r3c2 - (89=7)r7c2 - (7=3)r6c2 - r6c8 = r5c7 - (3)r2c7

_________________________________________________________________________________________________

Now, for my intended UR solution.

Code:
 r47c45  <79> UR via s-link              <> 7    r4c4   (extreme UR)
 r46c58  <47> UR via s-link              <> 7    r4c5
 r46c58  <47> UR via s-link              <> 7    r6c5

And the puzzle cracks with r5c4=7.

There's also an M-Wing that cracks the puzzle ... if you want to find it.
Back to top
View user's profile Send private message
Mogulmeister



Joined: 03 May 2007
Posts: 1151

PostPosted: Sun Jun 06, 2010 7:52 am    Post subject: Reply with quote

There's also a nest of <58> classic remote pairs that threaten to make useful elimination(s) but ..........
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Sun Jun 06, 2010 8:36 am    Post subject: Reply with quote

Danny, I'd never spot that first UR in a month of Sunday! I didn't even know you could make eliminations from a AUR where one of the corners wasn't a bivalue.

Looking at it I still don't really see how you eliminate 7 from r4c4? The strong links on 9 force the opposite corners to be 9 but without a bivalue I dont see what is constraining 7 to take part at all?

Enlightenment or a link to said would be great! Thanks
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sun Jun 06, 2010 1:30 pm    Post subject: Reply with quote

Code:
 r47c45  <79> UR via s-link              <> 7    r4c4

Hello Peter. Here are candidate grids for <7> and <9>. As you mentioned, the easy part of the explanation is for <9>.

Code:
 r4c4=7  =>  r4c5,r7c4=9
 +-----------------------------------+
 |  .  .  .  |  .  .  .  |  .  .  9  |
 |  .  .  9  |  .  .  9  |  .  .  .  |
 |  .  9  .  |  .  .  9  |  .  .  .  |
 |-----------+-----------+-----------|
 |  .  .  .  | *9 *9  .  |  .  .  .  |
 |  .  .  .  |  .  .  .  |  .  9  .  |
 |  9  .  .  |  .  .  .  |  .  .  .  |
 |-----------+-----------+-----------|
 |  .  9  .  | *9 *9  .  |  .  .  .  |
 |  .  .  .  |  .  .  .  |  9  .  .  |
 |  .  9  9  |  .  9  .  |  .  .  .  |
 +-----------------------------------+

It's only slightly more tricky to explain <7>.

Code:
 r4c4=7  =>  ( r46c5 -or- r78c4 )<>7  =>  r7c5=7
 +-----------------------------------+
 |  .  .  .  |  .  .  7  |  .  .  .  |
 |  7  .  7  |  .  .  .  |  .  .  .  |
 |  .  .  .  |  .  .  .  |  .  .  7  |
 |-----------+-----------+-----------|
 |  .  .  .  | *7 *7  .  |  .  7  .  |
 |  .  7  7  |  7  .  .  |  .  .  .  |
 |  .  7  .  |  . @7  .  |  .  7  .  |
 |-----------+-----------+-----------|
 |  7  7  .  | *7 *7  .  |  .  .  .  |
 |  .  .  7  | @7  .  .  |  .  .  .  |
 |  .  .  .  |  .  .  .  |  7  .  .  |
 +-----------------------------------+

If you enter the original grid into Simple Sudoku, set it to allow invalid assignments, highlight <7>, and force r4c4=7, then the forced assignment jumps out for <7>. At least it does for me. Subsequently highlighting <9> makes the forced assignments there obvious as well.

Regards, Danny
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Sun Jun 06, 2010 2:19 pm    Post subject: Reply with quote

Danny, that is truly a wonderful ADP. I have never seen a 10-cell configuration before. And your solution was eloquent.

For fun, I tried looking at the box implication outside the cells of the ADP and found the following.

Code:
To prevent the DP, r4c7|r7c5|r8c6=5 or r7c2=8

(5)r4c7 -                                (5=8)r5c9
(5)r7c5 - r7c1 = r9c1 - (5=8)r9c8 - r8c9 = (8)r5c9
(5)r8c6 - (58=7)r8c49 - (7=5+r5c4 -      (5=8)r5c9

(8)r7c2 - r9c1 = r9c8 - r8c9 =             (8)r5c9

Ted
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sun Jun 06, 2010 2:38 pm    Post subject: Reply with quote

Nice observation Ted. It definitely makes for a shorter and simpler handling of the DP. Too bad the DP is the worst choice (overall) for solving the puzzle.

I'm still hoping that someone will track down the M-Wing ... just to show that I hadn't planned for the solution to be so complicated.
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Sun Jun 06, 2010 6:47 pm    Post subject: Reply with quote

Danny, thanks for explaining the UR - I get it, but it's not yet my natural territory!

Is this your M-Wing? Nice!

m-wing(69) (9=6)r9c5-r2c5=(6-9)r2c6=r2c3; r9c3<>9
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sun Jun 06, 2010 7:05 pm    Post subject: Reply with quote

peterj wrote:
Is this your M-Wing? Nice!

m-wing(69) (9=6)r9c5-r2c5=(6-9)r2c6=r2c3; r9c3<>9

Yes, nice catch!
Back to top
View user's profile Send private message
wapati



Joined: 10 Jun 2008
Posts: 472
Location: Brampton, Ontario, Canada.

PostPosted: Sun Jun 06, 2010 11:53 pm    Post subject: Reply with quote

I saw a finned sword on 7s after basics.

I still needed a 4 cell xy-chain to finish. Embarassed
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Mon Jun 07, 2010 4:48 am    Post subject: Reply with quote

I made a couple of eliminations from the Hidden UR (58) in boxes 25, but don't know if that impacted the next move.

Code:
 +--------------------------------------------------------------+
 |  6     1     4     |  3     2     7     | *58   *58    9     |
 |  78    5     79    |  1     68    689   |  34    34    2     |
 |  3     89    2     |  4     58    589   |  1     6     7     |
 |--------------------+--------------------+--------------------|
 |  1     2     8     |  579   4579  3     |  45    47    6     |
 |  4     367   3567  |  57    1     2     | *58+3  9    *58    |
 |  9     37    357   |  6     4578  58    |  2     347   1     |
 |--------------------+--------------------+--------------------|
 | *58+7  789   1     | *58+79 579   4     |  6     2     3     |
 |  2     4     67    | *58+7  3     56    |  9     1    *58    |
 | *58    369   369   |  2     69    1     |  7    *58    4     |
 +--------------------------------------------------------------+


Looking at the potential 36 UR in r5c23 and r9c23, the killers in r5 form a 57 pseudo cell which forms a naked pair with r4c4. One of r9c23 must be=9. Either way, r5c79 must be=38, finishing the puzzle.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group