dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Puzzle 10/07/12: Extreme

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj
View previous topic :: View next topic  
Author Message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Jul 12, 2010 2:15 pm    Post subject: Puzzle 10/07/12: Extreme Reply with quote

Code:
 +-----------------------+
 | 2 6 . | 5 . . | . . . |
 | 5 . . | 6 4 . | . 2 . |
 | . . 4 | . . . | . 6 . |
 |-------+-------+-------|
 | 1 3 . | 2 . . | . 4 . |
 | . 7 . | . 1 3 | 9 5 2 |
 | . . . | . 7 6 | . . . |
 |-------+-------+-------|
 | . . . | . 2 . | 3 7 . |
 | . 1 2 | 7 6 . | 5 8 . |
 | . . . | . 5 . | . . 6 |
 +-----------------------+

Play this puzzle online at the Daily Sudoku site

Code:
 after basics
 +--------------------------------------------------------------+
 |  2     6     13    |  5     89    7     |  4     139   1389  |
 |  5     89    13    |  6     4     189   |  7     2     1389  |
 |  7     89    4     |  189   3     2     |  18    6     5     |
 |--------------------+--------------------+--------------------|
 |  1     3     89    |  2     89    5     |  6     4     7     |
 |  468   7     68    |  48    1     3     |  9     5     2     |
 |  49    2     5     |  49    7     6     |  18    13    138   |
 |--------------------+--------------------+--------------------|
 |  689   5     689   |  189   2     1489  |  3     7     149   |
 |  3     1     2     |  7     6     49    |  5     8     49    |
 |  89    4     7     |  3     5     189   |  2     19    6     |
 +--------------------------------------------------------------+
 # 47 eliminations remain
Back to top
View user's profile Send private message
Mogulmeister



Joined: 03 May 2007
Posts: 1151

PostPosted: Mon Jul 12, 2010 3:27 pm    Post subject: Reply with quote

A two step to start with:

Quote:
1.Colouring on 1s* r6c8<>1
2.XY Wing <189> vertex at r3c8; r1c9<>8 solves puzzle


[Ed]Correction !!


Last edited by Mogulmeister on Mon Jul 12, 2010 4:42 pm; edited 1 time in total
Back to top
View user's profile Send private message
Mogulmeister



Joined: 03 May 2007
Posts: 1151

PostPosted: Mon Jul 12, 2010 4:09 pm    Post subject: Reply with quote

Quote:
OK an almost XY wing (asterisks) <189> which has a fin (3) in r1c8

IF FIN false then r1c9, r3c4<>8 solves puzzle

otherwise

FIN true (19=3)r1c8-(3=1)r6c8-(1)r6c7; r6c7<>1 solves puzzle


Code:
+----------------+----------------+----------------+
| 2    6    13   | 5   *89   7    | 4   *139 139-8 |
| 5    89   13   | 6    4    189  | 7    2    1389 |
| 7    89   4    | 19-8 3    2    |*18   6    5    |
+----------------+----------------+----------------+
| 1    3    89   | 2    89   5    | 6    4    7    |
| 468  7    68   | 48   1    3    | 9    5    2    |
| 49   2    5    | 49   7    6    |8-1   13   138  |
+----------------+----------------+----------------+
| 689  5    689  | 189  2    1489 | 3    7    149  |
| 3    1    2    | 7    6    49   | 5    8    49   |
| 89   4    7    | 3    5    189  | 2    19   6    |
+----------------+----------------+----------------+
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Tue Jul 13, 2010 3:47 am    Post subject: Reply with quote

My first pass was two steps........

Quote:
ER9 with hinge box7 SL r6c14: r7c4<>9
Flightless w-wing 18 r6c7 & r7c4 SL (1)r3c47 plus transport (8)r7c4-r79c6=r2c6-r1c5=(8)r1c9; r6c9<>8

Ted
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Tue Jul 13, 2010 3:59 am    Post subject: Reply with quote

Mogulmeister wrote:
Quote:
OK an almost XY wing (asterisks) <189> which has a fin (3) in r1c8

IF FIN false then r1c9, r3c4<>8 solves puzzle

otherwise

FIN true (19=3)r1c8-(3=1)r6c8-(1)r6c7; r6c7<>1 solves puzzle


Code:
+----------------+----------------+----------------+
| 2    6    13   | 5   *89   7    | 4   *139 139-8 |
| 5    89   13   | 6    4    189  | 7    2    1389 |
| 7    89   4    | 19-8 3    2    |*18   6    5    |
+----------------+----------------+----------------+
| 1    3    89   | 2    89   5    | 6    4    7    |
| 468  7    68   | 48   1    3    | 9    5    2    |
| 49   2    5    | 49   7    6    |8-1   13   138  |
+----------------+----------------+----------------+
| 689  5    689  | 189  2    1489 | 3    7    149  |
| 3    1    2    | 7    6    49   | 5    8    49   |
| 89   4    7    | 3    5    189  | 2    19   6    |
+----------------+----------------+----------------+


MM,

This is the second time I have noticed a post by you where you solve a finned step by noting that both the step and the fin complete the puzzle. Do you actually follow the implications of both to determine what happens, or do you use some Mogul Magic. I love the scheme, but the task of analyzing each implication of the fin seems to be overwhelming.

Ted
Back to top
View user's profile Send private message
Mogulmeister



Joined: 03 May 2007
Posts: 1151

PostPosted: Tue Jul 13, 2010 7:02 am    Post subject: Reply with quote

Ted, I generally look to see what Almost structures (ALS xy, ANx, AHP, ALS, XY, XYZ) could be lurking in the puzzle - this is the most entertaining part for me.

I then look to see if, when unencumbered, those structures do serious damage to the puzzle - quite often they are unproductive or just a step along the way. If they show promise, I will then see what happens to any fin.

Ideally they will loop back to make a virtuous circle but oftimes do not! This is why in some of my schemes the fin sometimes makes the same elimination (as in your kraken) but is not a given.

I create several als to look at implications as I enjoy these - I find it quite rewarding as it brings in pattern and chain recognition into the solving mindset. As to overwhelming - I find that you do develop an instinct/hunch.
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Tue Jul 13, 2010 12:01 pm    Post subject: Reply with quote

UR (13) boxes13; r12c9<>9
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Tue Jul 13, 2010 2:00 pm    Post subject: Reply with quote

Mogulmeister wrote:
Ted, I generally look to see what Almost structures (ALS xy, ANx, AHP, ALS, XY, XYZ) could be lurking in the puzzle - this is the most entertaining part for me.

I then look to see if, when unencumbered, those structures do serious damage to the puzzle - quite often they are unproductive or just a step along the way. If they show promise, I will then see what happens to any fin.

Ideally they will loop back to make a virtuous circle but oftimes do not! This is why in some of my schemes the fin sometimes makes the same elimination (as in your kraken) but is not a given.

I create several als to look at implications as I enjoy these - I find it quite rewarding as it brings in pattern and chain recognition into the solving mindset. As to overwhelming - I find that you do develop an instinct/hunch.


MM, I share your enjoyment of looking for "almost" patterns and then checking out the possibilities. Such an approach offers an unlimited set of possible patterns to consider whereas searching for only "classic" patterns may become routine. Plus, as you indicated, chasing the implications can be extremely challenging but fun.

Ted
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Tue Jul 13, 2010 3:21 pm    Post subject: Reply with quote

I'm still working on Marty's solution. In the meantime, my solver found a short network that I was able to convert.

This is just a FYI:

Code:
 (89=1)r2c26 - r9c6 = (1-9)r9c8 = (9)r1c8  =>  r2c9<>9

Anyone get anywhere examining the overlapping <13> URs ?


Last edited by daj95376 on Tue Jul 13, 2010 3:23 pm; edited 1 time in total
Back to top
View user's profile Send private message
Mogulmeister



Joined: 03 May 2007
Posts: 1151

PostPosted: Tue Jul 13, 2010 3:23 pm    Post subject: Reply with quote

Yes please elucidate Danny/Marty on that UR 13 solution - I'm not the greatest UR practitioner (as you can tell from my solutions)!
Back to top
View user's profile Send private message
Mogulmeister



Joined: 03 May 2007
Posts: 1151

PostPosted: Tue Jul 13, 2010 3:29 pm    Post subject: Reply with quote

daj95376 wrote:
I'm still working on Marty's solution. In the meantime, my solver found a short network that I was able to convert.

This is just a FYI:

Code:
 (89=1)r2c26 - r9c6 = (1-9)r9c8 = (9)r1c8  =>  r2c9<>9

Anyone get anywhere examining the overlapping <13> URs ?


Danny, presumably you mean (9)r1c8 => r12c9<>9
Back to top
View user's profile Send private message
Mogulmeister



Joined: 03 May 2007
Posts: 1151

PostPosted: Tue Jul 13, 2010 3:33 pm    Post subject: Reply with quote

Sorry, by mean I meant need.
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Tue Jul 13, 2010 3:50 pm    Post subject: Reply with quote

When I was looking at the implications, a 9 in r12c9 led to an invalidity. I certainly could have erred, but I did check twice to make sure.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Tue Jul 13, 2010 5:05 pm    Post subject: Reply with quote

Mogulmeister wrote:
daj95376 wrote:
I'm still working on Marty's solution. In the meantime, my solver found a short network that I was able to convert.

This is just a FYI:

Code:
 (89=1)r2c26 - r9c6 = (1-9)r9c8 = (9)r1c8  =>  r2c9<>9

Anyone get anywhere examining the overlapping <13> URs ?


Danny, presumably you mean (9)r1c8 => r12c9<>9

The <89> pair starting my chain only has peers in [r2]. Thus, the single elimination. Resulting in:

Code:
 r1  b3  Locked Candidate 1              <> 9    r1c5

 Singles to End (STE)


Last edited by daj95376 on Tue Jul 13, 2010 5:48 pm; edited 2 times in total
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Tue Jul 13, 2010 5:22 pm    Post subject: Reply with quote

daj95376 wrote:
I'm still working on Marty's solution. In the meantime, my solver found a short network that I was able to convert.

This is just a FYI:

Code:
 (89=1)r2c26 - r9c6 = (1-9)r9c8 = (9)r1c8  =>  r2c9<>9

Anyone get anywhere examining the overlapping <13> URs ?


Yes, I looked at both the overlapping URs and the 6-cell DP r126c689 but the only thing I found was the deletion r2c9<>9
as you noted.

Ted
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Tue Jul 13, 2010 5:46 pm    Post subject: Reply with quote

My solver found the following UR eliminations:

Code:
 +--------------------------------------------------------------+
 |  2     6     13    |  5     89    7     |  4     139   1389  |
 |  5     89    13    |  6     4     189   |  7     2     1389  |
 |  7     89    4     |  189   3     2     |  18    6     5     |
 |--------------------+--------------------+--------------------|
 |  1     3     89    |  2     89    5     |  6     4     7     |
 |  468   7     68    |  48    1     3     |  9     5     2     |
 |  49    2     5     |  49    7     6     |  18    13    138   |
 |--------------------+--------------------+--------------------|
 |  689   5     689   |  189   2     1489  |  3     7     149   |
 |  3     1     2     |  7     6     49    |  5     8     49    |
 |  89    4     7     |  3     5     189   |  2     19    6     |
 +--------------------------------------------------------------+
 # 47 eliminations remain

 r78c69  <49> UR Type 4.2243             r7c69<>9
 <x list-only>

 r57c13  <68> UR via s-link              <> 8    r5c1
 r57c13  <68> UR via s-link              <> 8    r7c1
 r57c13  <68> UR via s-link              <> 8    r7c3
 r12c39  <13> UR via s-link              <> 1    r1c9
 r78c69  <49> UR via s-link              <> 9    r7c6   same as Type 4 above
 r78c69  <49> UR via s-link              <> 9    r7c9   same as Type 4 above
 <s list-only>

After Marty mentioned his eliminations on 9s, I examined the <13> UR and found two eliminations (that didn't help).

Code:
( r1c9=8 | r2c9=8 )        r3c7=1  =>  r12c9<>1
( r1c9=9 | r2c9=9 ) r8c9=4 r7c9=1  =>  r12c9<>1

Marty's used of an invalidity based on r12c9=9 explains why I couldn't duplicate his eliminations.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group