dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

M-Ring/APE and extended S-Wing Examples

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Solving techniques, and terminology
View previous topic :: View next topic  
Author Message
Bud



Joined: 06 May 2010
Posts: 47
Location: Tampa, Florida

PostPosted: Tue Jul 20, 2010 3:11 pm    Post subject: M-Ring/APE and extended S-Wing Examples Reply with quote

I think the cells labeled ABCD in B14 of this example is an M-Ring, but it does not fit any of the example Types A through D. It can also be considered to be an aligned pair exclusion and maybe it is both. Let me briefly go over the logic in simple terms. The 79 A cell sees an ER iin B4 which forces the candidates in cell D to be either 7 or 9. Any other cnadidates in cell D can be eliminated, in this case 3. This I think could be considered to be an APE or an M-WIng elimination. There is now a grouped continuous 79 loop in B14 and C12, which eliminates the 7 and 9 in R1C1. This I think is an M-Ring elimination. Shouldn't the pattern in this example be added to the list?

The cells in the extended S-Wing are marked with an asterisk in B369. The pivot for the S-Wing is the the 34 cell R8C8. This results in either a 4 in R6C9 or a 3 in R5C9 and a 9 in R1C9. This implies that R6C9<>9. Thus adding a cell to the S-Wing provides a cell elimination whereas the S-Wing by itself does not. I personally have found S-Wings to be about as common and easy to find as W-Wings.

M-Ring/APE Example?
Code:

 |-------------------+--------------------+---------------------|
 | 356-7-9 3679 3568 |  279    69    268  |    4      1     39* |
 |    1    3679  368 |  479   469     68  |  379      5      2  |
 |   79A     2    4  |   5      1      3  |  789    789      6  |
 |-------------------+--------------------+---------------------|
 |  356    346   356 |   8      2      9  |    1    346*     7  |
 |  379B  -379D   1  |   6      5      4  |    2    389*   389* |
 |  269C     8    26 |   3      7      1  |    5    469    4-9* |
 |-------------------+--------------------+---------------------|
 |    4    136    7  |   19   369      5  |  389      2   1389  |
 |   23     13    9  |  124     8      7  |    6     34*     5  |
 |    8      5   236 | 1249  3469     26  |  379   3479   1349* |
 |-------------------+--------------------+---------------------|


The original puzzle is Sudoku 9981 Extreme Book 39 #1.
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 398

PostPosted: Tue Jul 20, 2010 3:46 pm    Post subject: Re: M-Ring/APE and extended S-Wing Examples Reply with quote

Bud wrote:
This I think is an M-Ring elimination. Shouldn't the pattern in this example be added to the list?

It is, and yours fits the type D illustration.

Bud wrote:
The cells in the extended S-Wing are marked with an asterisk in B369. The pivot for the S-Wing is the the 34 cell R8C8. This results in either a 4 in R6C9 or a 3 in R5C9 and a 9 in R1C9. This implies that R6C9<>9. Thus adding a cell to the S-Wing provides a cell elimination whereas the S-Wing by itself does not.

Nice extension.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Tue Jul 20, 2010 4:55 pm    Post subject: Re: M-Ring/APE and extended S-Wing Examples Reply with quote

Bud wrote:
I think the cells labeled ABCD in B14 of this example is an M-Ring, but it does not fit any of the example Types A through D.

You labeled the grid improperly for an M-Ring. Here are two M-Rings that use your cells.

Code:
 Loop B (7=9)r3c1 - r56c1 = (9-7)r5c2 = (7)r12c2 - loop  =>  r5c2<>3, r1c1<>79
 +-----------------------------------------------------------------------+
 |  35679 D3679   3568   |  279    69     268    |  4      1      39     |
 |  1     D3679   368    |  479    469    68     |  379    5      2      |
 | A79     2      4      |  5      1      3      |  789    789    6      |
 |-----------------------+-----------------------+-----------------------|
 |  356    4      356    |  8      2      9      |  1      36     7      |
 | B379   C379    1      |  6      5      4      |  2      389    389    |
 | B269    8      26     |  3      7      1      |  5      469    49     |
 |-----------------------+-----------------------+-----------------------|
 |  4      136    7      |  19     369    5      |  389    2      1389   |
 |  23     13     9      |  124    8      7      |  6      34     5      |
 |  8      5      236    |  1249   3469   26     |  379    3479   1349   |
 +-----------------------------------------------------------------------+
 # 84 eliminations remain

Code:
 Loop D (7=9)r3c1 - r56c1 = (9-7)r5c2 = (7)r5c1  - loop  =>  r5c2<>3, r1c1<>79
 +-----------------------------------------------------------------------+
 |  35679  3679   3568   |  279    69     268    |  4      1      39     |
 |  1      3679   368    |  479    469    68     |  379    5      2      |
 | A79     2      4      |  5      1      3      |  789    789    6      |
 |-----------------------+-----------------------+-----------------------|
 |  356    4      356    |  8      2      9      |  1      36     7      |
 | B379D  C379    1      |  6      5      4      |  2      389    389    |
 | B269    8      26     |  3      7      1      |  5      469    49     |
 |-----------------------+-----------------------+-----------------------|
 |  4      136    7      |  19     369    5      |  389    2      1389   |
 |  23     13     9      |  124    8      7      |  6      34     5      |
 |  8      5      236    |  1249   3469   26     |  379    3479   1349   |
 +-----------------------------------------------------------------------+
 # 84 eliminations remain

There are two other M-Rings present as well.

Code:
Loop B (7=9)r3c1 - r12c2 = (9-7)r5c2 = (7)r5c1  - loop  =>  r5c2<>3, r1c1<>79
Loop C (7=9)r3c1 - r12c2 = (9-7)r5c2 = (7)r12c2 - loop  =>  r5c2<>3, r1c1<>79

Personally, I'm impressed by the Type C use of overlapping grouped strong links in [c2] for <7> and <9>.

Hopefully, ronk won't find duplicates in my list this time. _ Smile _
Back to top
View user's profile Send private message
strmckr



Joined: 18 Aug 2009
Posts: 64

PostPosted: Mon Jul 26, 2010 3:29 am    Post subject: Reply with quote

Quote:
Bud wrote:
The cells in the extended S-Wing are marked with an asterisk in B369. The pivot for the S-Wing is the the 34 cell R8C8. This results in either a 4 in R6C9 or a 3 in R5C9 and a 9 in R1C9. This implies that R6C9<>9. Thus adding a cell to the S-Wing provides a cell elimination whereas the S-Wing by itself does not.

Nice extension.
very nice indeed Smile im glad u found my posts useful.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Solving techniques, and terminology All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group