View previous topic :: View next topic |
Author |
Message |
Bud
Joined: 06 May 2010 Posts: 47 Location: Tampa, Florida
|
Posted: Tue Jul 20, 2010 3:11 pm Post subject: M-Ring/APE and extended S-Wing Examples |
|
|
I think the cells labeled ABCD in B14 of this example is an M-Ring, but it does not fit any of the example Types A through D. It can also be considered to be an aligned pair exclusion and maybe it is both. Let me briefly go over the logic in simple terms. The 79 A cell sees an ER iin B4 which forces the candidates in cell D to be either 7 or 9. Any other cnadidates in cell D can be eliminated, in this case 3. This I think could be considered to be an APE or an M-WIng elimination. There is now a grouped continuous 79 loop in B14 and C12, which eliminates the 7 and 9 in R1C1. This I think is an M-Ring elimination. Shouldn't the pattern in this example be added to the list?
The cells in the extended S-Wing are marked with an asterisk in B369. The pivot for the S-Wing is the the 34 cell R8C8. This results in either a 4 in R6C9 or a 3 in R5C9 and a 9 in R1C9. This implies that R6C9<>9. Thus adding a cell to the S-Wing provides a cell elimination whereas the S-Wing by itself does not. I personally have found S-Wings to be about as common and easy to find as W-Wings.
M-Ring/APE Example? Code: |
|-------------------+--------------------+---------------------|
| 356-7-9 3679 3568 | 279 69 268 | 4 1 39* |
| 1 3679 368 | 479 469 68 | 379 5 2 |
| 79A 2 4 | 5 1 3 | 789 789 6 |
|-------------------+--------------------+---------------------|
| 356 346 356 | 8 2 9 | 1 346* 7 |
| 379B -379D 1 | 6 5 4 | 2 389* 389* |
| 269C 8 26 | 3 7 1 | 5 469 4-9* |
|-------------------+--------------------+---------------------|
| 4 136 7 | 19 369 5 | 389 2 1389 |
| 23 13 9 | 124 8 7 | 6 34* 5 |
| 8 5 236 | 1249 3469 26 | 379 3479 1349* |
|-------------------+--------------------+---------------------| |
The original puzzle is Sudoku 9981 Extreme Book 39 #1. |
|
Back to top |
|
|
ronk
Joined: 07 May 2006 Posts: 398
|
Posted: Tue Jul 20, 2010 3:46 pm Post subject: Re: M-Ring/APE and extended S-Wing Examples |
|
|
Bud wrote: | This I think is an M-Ring elimination. Shouldn't the pattern in this example be added to the list? |
It is, and yours fits the type D illustration.
Bud wrote: | The cells in the extended S-Wing are marked with an asterisk in B369. The pivot for the S-Wing is the the 34 cell R8C8. This results in either a 4 in R6C9 or a 3 in R5C9 and a 9 in R1C9. This implies that R6C9<>9. Thus adding a cell to the S-Wing provides a cell elimination whereas the S-Wing by itself does not. |
Nice extension. |
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Tue Jul 20, 2010 4:55 pm Post subject: Re: M-Ring/APE and extended S-Wing Examples |
|
|
Bud wrote: | I think the cells labeled ABCD in B14 of this example is an M-Ring, but it does not fit any of the example Types A through D. |
You labeled the grid improperly for an M-Ring. Here are two M-Rings that use your cells.
Code: | Loop B (7=9)r3c1 - r56c1 = (9-7)r5c2 = (7)r12c2 - loop => r5c2<>3, r1c1<>79
+-----------------------------------------------------------------------+
| 35679 D3679 3568 | 279 69 268 | 4 1 39 |
| 1 D3679 368 | 479 469 68 | 379 5 2 |
| A79 2 4 | 5 1 3 | 789 789 6 |
|-----------------------+-----------------------+-----------------------|
| 356 4 356 | 8 2 9 | 1 36 7 |
| B379 C379 1 | 6 5 4 | 2 389 389 |
| B269 8 26 | 3 7 1 | 5 469 49 |
|-----------------------+-----------------------+-----------------------|
| 4 136 7 | 19 369 5 | 389 2 1389 |
| 23 13 9 | 124 8 7 | 6 34 5 |
| 8 5 236 | 1249 3469 26 | 379 3479 1349 |
+-----------------------------------------------------------------------+
# 84 eliminations remain
|
Code: | Loop D (7=9)r3c1 - r56c1 = (9-7)r5c2 = (7)r5c1 - loop => r5c2<>3, r1c1<>79
+-----------------------------------------------------------------------+
| 35679 3679 3568 | 279 69 268 | 4 1 39 |
| 1 3679 368 | 479 469 68 | 379 5 2 |
| A79 2 4 | 5 1 3 | 789 789 6 |
|-----------------------+-----------------------+-----------------------|
| 356 4 356 | 8 2 9 | 1 36 7 |
| B379D C379 1 | 6 5 4 | 2 389 389 |
| B269 8 26 | 3 7 1 | 5 469 49 |
|-----------------------+-----------------------+-----------------------|
| 4 136 7 | 19 369 5 | 389 2 1389 |
| 23 13 9 | 124 8 7 | 6 34 5 |
| 8 5 236 | 1249 3469 26 | 379 3479 1349 |
+-----------------------------------------------------------------------+
# 84 eliminations remain
|
There are two other M-Rings present as well.
Code: | Loop B (7=9)r3c1 - r12c2 = (9-7)r5c2 = (7)r5c1 - loop => r5c2<>3, r1c1<>79
Loop C (7=9)r3c1 - r12c2 = (9-7)r5c2 = (7)r12c2 - loop => r5c2<>3, r1c1<>79
|
Personally, I'm impressed by the Type C use of overlapping grouped strong links in [c2] for <7> and <9>.
Hopefully, ronk won't find duplicates in my list this time. _ _ |
|
Back to top |
|
|
strmckr
Joined: 18 Aug 2009 Posts: 64
|
Posted: Mon Jul 26, 2010 3:29 am Post subject: |
|
|
Quote: | Bud wrote:
The cells in the extended S-Wing are marked with an asterisk in B369. The pivot for the S-Wing is the the 34 cell R8C8. This results in either a 4 in R6C9 or a 3 in R5C9 and a 9 in R1C9. This implies that R6C9<>9. Thus adding a cell to the S-Wing provides a cell elimination whereas the S-Wing by itself does not.
Nice extension. | very nice indeed im glad u found my posts useful. |
|
Back to top |
|
|
|
|
You cannot post new topics in this forum You cannot reply to topics in this forum You cannot edit your posts in this forum You cannot delete your posts in this forum You cannot vote in polls in this forum
|
Powered by phpBB © 2001, 2005 phpBB Group
|