dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Puzzle 10/09/15: Extreme

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj
View previous topic :: View next topic  
Author Message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Wed Sep 15, 2010 4:40 am    Post subject: Puzzle 10/09/15: Extreme Reply with quote

Most of the reasonable puzzles are posted from my current collection. I'll generate more soon.
However, I have a number of difficult and extreme puzzles remaining. So, I'm clearing some out.

Code:
 +-----------------------+
 | . 1 4 | 3 . 7 | 6 . . |
 | 8 . 9 | 4 . . | 3 2 . |
 | . . . | 9 . . | . . . |
 |-------+-------+-------|
 | 3 . 6 | . . 9 | 2 . . |
 | . 5 . | . 8 . | . . . |
 | 2 . . | 1 . 6 | . . . |
 |-------+-------+-------|
 | 7 . . | 6 . . | 9 . . |
 | . 4 . | . . . | . 5 . |
 | . . . | . . . | . . . |
 +-----------------------+

Play this puzzle online at the Daily Sudoku site
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Wed Sep 15, 2010 12:00 pm    Post subject: Reply with quote

Not that easy to find a minimal set of steps of depth less than or equal to 4 ...
Quote:
3-SIS Grouped X Chain (1)R2C7R7 : => r78c6<>1
3-SIS M Wing (58) : (85)R9C4 5B7 8R7 : (8)r9c4=(8)r7c8 : => r9c78<>8
4-SIS XY Chain or ALS XY Wing (145-8) : (81)R8C7, (14)R9C7, (45=8)R9C46 : => r8c4<>8
3-SIS S Wing : 5R2 (54)R9C6 4C7 : (5)r2c9=(4)r3c7 : => r3c7<>5
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Wed Sep 15, 2010 8:16 pm    Post subject: Reply with quote

Three steps - first a bit mucky!
Quote:
AIC (3=2)r7c2 - r7c9=(2-3*-7)r9c9=(7-3)r9c8=r7c89 ; r7c35<>3
(Not sure how to notate but essentially the strong link on 2 and 7 in b9 stop either r9c89 being 3...)
sashimi x-wing(1) ; r7c89<>1
xy-chain ; (5=1)r2c9 - (1=5)r2c6 - (5=4)r9c6 - (4=1)r9c7 - (1=8)r8c7 - (8=5)r6c7 ; r6c9<>5, r3c7<>5
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Thu Sep 16, 2010 1:46 am    Post subject: Reply with quote

Peter: How about applying your logic from right-to-left? (for easier interpretation)

Code:
 (3)r7c89 = (37-2)r9c89 = (2)r7c9 - (2=3)r7c2 - loop  =>  r7c35<>3 (for starters)
 +-----------------------------------------------------------------------+
 |  5      1      4      |  3      2      7      |  6      9      8      |
 |  8      7      9      |  4      6      15     |  3      2      15     |
 |  6      23     23     |  9      15     8      |  145    147    1457   |
 |-----------------------+-----------------------+-----------------------|
 |  3      8      6      |  57     457    9      |  2      14     145    |
 |  4      5      1      |  2      8      3      |  7      6      9      |
 |  2      9      7      |  1      45     6      |  458    348    345    |
 |-----------------------+-----------------------+-----------------------|
 |  7      23     2358   |  6      135    1245   |  9      1348   1234   |
 |  19     4      238    |  78     1379   12     |  18     5      6      |
 |  19     6      2358   |  58     1359   1245   |  148    13478  12347  |
 +-----------------------------------------------------------------------+
 # 70 eliminations remain

More eliminations possible because of the continuous loop _ Question _

I refuse to admit how long I stared at the AHP(37)r9c89 before realizing it could be put into play. _ Embarassed _


Last edited by daj95376 on Thu Sep 16, 2010 2:04 am; edited 1 time in total
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Thu Sep 16, 2010 2:02 am    Post subject: Reply with quote

peterj wrote:
AIC (3=2)r7c2 - r7c9=(2-3*-7)r9c9=(7-3)r9c8=r7c89 ; r7c35<>3
(Not sure how to notate but essentially the strong link on 2 and 7 in b9 stop either r9c89 being 3...)

Peter : you have written your first AIC as a "Transport" or "Transfer" Matrix :

Code:
.---------------------.---------------------.---------------------.
| 5      1      4     | 3      2      7     | 6      9      8     |
| 8      7      9     | 4      6      15    | 3      2      15    |
| 6      23     23    | 9      15     8     | 145    147    1457  |
:---------------------+---------------------+---------------------:
| 3      8      6     | 57     457    9     | 2      14     145   |
| 4      5      1     | 2      8      3     | 7      6      9     |
| 2      9      7     | 1      45     6     | 458    348    345   |
:---------------------+---------------------+---------------------:
| 7      23     2358  | 6      135    1245  | 9      1348   1234  |
| 19     4      238   | 78     1379   12    | 18     5      6     |
| 19     6      2358  | 58     1359   1245  | 148    13478  12347 |
'---------------------'---------------------'---------------------'

(32)R7C2 : (3)r7c2 (2)r7c2
2B9 .... : ....... (2)r7c9 (2)r9c9
7B9 .... : ....... ....... (7)r9c9 (7)r9c8
3B9 .... : ....... ....... (3)r9c9 (3)r9c8 (3)r7c89

-> (3)r7c2=(3)r7c89 : => r7c35<>3 (Here, the first column identifies the SIS used in each row).

This suggests writing down the AIC as :
    4-SIS AIC : (32)R7C2 [2B9 7B9] 3B9 : (3=2)r7c2-r7c9=HP(27)r9c89-(3)r9c89=r7c89 : => r7c35<>3
Furthermore, the AIC is a continuous network disguised in a good looking continuous nice loop (no need of a 20 feet pole to tackle it ... Very Happy). The weak links are thus strong : r7c36<>2, r9c89 contains 237 at most or r9c89<>148.

BTW, I had these last eliminations from the following 6-SIS AIC : NP(27)r9c89=(2)r7c9-(2=3)r7c2-r7c8=NT(148)B9 : => r9c89<>148. You did a better job with the HP(27)B9 Exclamation

Further comments :

If the last entry in the Transport Matrix is written in the first column, one obtains a 4x4 Symmetric Pigeonhole Matrix : each row contains at least one truth and each column contains at most one truth => each column is a derived SIS. In details :

Code:
 SIS\WIS + 3r7..... 2r7..... *r9c9... *r9c8
---------+-------------------------------------
(32)R7C2 + (3)r7c2. (2)r7c2
2B9 .... + ........ (2)r7c9. (2)r9c9
7B9 .... + ........ ........ (7)r9c9. (7)r9c8
3B9 .... + (3)r7c89 ........ (3)r9c9. (3)r9c8
---------+-------------------------------------
=> Elim. + (3)r7c35 (2)r7c36 (14)r9c9 (148)r9c8

Regards, JC
[edit : typos corrected and addition of overlooked eliminations on 2 Embarassed - Thanks Danny for checking !]


Last edited by JC Van Hay on Thu Sep 16, 2010 2:37 am; edited 3 times in total
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Thu Sep 16, 2010 6:41 am    Post subject: Reply with quote

This puzzle earned its rating. Six eliminations on <1> that weaken it for a 5-SIS on two values across eight cells.

Code:
 r89c15  <19> UR Type 4.2244             r89c5<>1

 c57\r37 Sashimi X-Wing                  <> 1    r7c89

 r7  b8  Locked Candidate 2              <> 1    r89c6

 +-----------------------------------------------------------------------+
 |  5      1      4      |  3      2      7      |  6      9      8      |
 |  8      7      9      |  4      6     a15     |  3      2      15     |
 |  6      23     23     |  9     b15     8      | c145    147    1457   |
 |-----------------------+-----------------------+-----------------------|
 |  3      8      6      |  57     457    9      |  2      14     145    |
 |  4      5      1      |  2      8      3      |  7      6      9      |
 |  2      9      7      |  1      45     6      | d458   e348    345    |
 |-----------------------+-----------------------+-----------------------|
 |  7      23    g2358   |  6      135    145    |  9     f348    234    |
 |  19     4      38     |  78     379    2      |  18     5      6      |
 |  19     6     h2358   |  58     359    4-5    |  148    13478  12347  |
 +-----------------------------------------------------------------------+
 # 61 eliminations remain

 (5)r2c6 = r3c5 - r3c7 = (5-8)r6c7 = r6c8 - r7c8 = (8-5)r7c3 = (5)r9c3  =>  r9c6<>5

Translation for JC:

Code:
5B2 5C7 8R6 8R7 5C3 : (5)r2c6 = (5)r9c3 : => r9c6<>5

With that, it's obvious that I need to get some sleep. Goodnight!
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Thu Sep 16, 2010 7:03 am    Post subject: Reply with quote

Danny, JC, thanks for taking the time to look at my move!
There is something about AHPs that makes them particularly hard to see - actually even plain HPs I usually come to from the corresponding quad/quin.
It definitely had a 'network' feel to it - but I felt in mitigation that is more like a side-effect than a real branching of the chain! Smile The AHP/ANQ is much cleaner.
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Thu Sep 16, 2010 10:24 am    Post subject: Reply with quote

Peter : HPs and AHPs are easily detected while pencilmarking if the bi-locals are tagged at the same time. For an HP, there are 2 cells containing the same pair of 2 digits carrying the same tags in a box (..), in a row (--) or in a column (||) and for an AHP, one of the 2 cells associated with the bi-locals is a "hub" cell.

BTW, your 3rd move is identical to a 3-SIS S Wing (45)R9C6. In this way, your solution becomes perfect (3 steps of depth <= 4).

Danny : Cool, your solution .... Thanks a lot for your enjoyable tailored puzzles Exclamation They are of great help to make progress in solving even tougher puzzles.

Regards, JC
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Thu Sep 16, 2010 1:58 pm    Post subject: Reply with quote

Peter, that was a great move Exclamation

I found several steps but never one that started to unravel the puzzle. Maybe I will try finding some chains later.....

Ted
Back to top
View user's profile Send private message
ttt



Joined: 06 Dec 2008
Posts: 42
Location: vietnam

PostPosted: Thu Sep 16, 2010 4:54 pm    Post subject: Reply with quote

tlanglet wrote:
I found several steps but never one that started to unravel the puzzle. Maybe I will try finding some chains later.....

On my experience, to solve sudoku puzzles (supported by SS solver & SudoCue solver – Ruud’s solver: to see bilocations) I always consider AHP first. Don’t know that is useful for you or not... Very Happy

BTW, Danny: I don’t think we are on difference sudoku universe, we are the same sudoku universe... Very Happy
Again, I had drunk too much... tonight Embarassed

ttt
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Thu Sep 16, 2010 5:37 pm    Post subject: Reply with quote

Type 4 UR (19)
ER (1)
Type 1 UR (23)
Multi-coloring (1)
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Fri Sep 17, 2010 2:25 am    Post subject: Reply with quote

ttt wrote:
tlanglet wrote:
I found several steps but never one that started to unravel the puzzle. Maybe I will try finding some chains later.....

On my experience, to solve sudoku puzzles (supported by SS solver & SudoCue solver – Ruud’s solver: to see bilocations) I always consider AHP first. Don’t know that is useful for you or not... Very Happy

ttt


Thanks ttt for the suggestion. In fact, based on studying solutions I found on Eureka, I have concluded AN(PTQ) and AH(PTQ) along with chains are the normal type of steps to unravel difficult puzzles. In this case, I did find a couple of interesting "almosts" but they did not seem to offer further usefulness. It is great fun to solve a difficult puzzle, but every good step is also a small victory.

Ted
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Puzzles by daj All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group