dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

XY-Loop--yet again

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Solving techniques, and terminology
View previous topic :: View next topic  
Author Message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Nov 19, 2010 5:42 pm    Post subject: XY-Loop--yet again Reply with quote

Here I am after a UR and a couple of X-Wings:

Code:

+-------------+-----------+------------+
| 6  247  8   | 5  24  1  | 249 79  3  |
| 34 127  27  | 9  238 6  | 5   178 24 |
| 5  1234 9   | 23 7   48 | 248 18  6  |
+-------------+-----------+------------+
| 2  5    4   | 8  1   7  | 6   3   9  |
| 1  9    3   | 6  5   2  | 7   4   8  |
| 8  67   67  | 4  9   3  | 1   2   5  |
+-------------+-----------+------------+
| 7  2348 25  | 23 6   9  | 248 58  1  |
| 34 268  1   | 7  238 5  | 289 689 24 |
| 9  2468 256 | 1  248 48 | 3   568 7  |
+-------------+-----------+------------+

Play this puzzle online at the Daily Sudoku site

I've done this a couple of times and ended with an invalidity and wonder if I'm messing up a loop. Consider this loop:

R7c3=5-->r7c8=8-->r3c8=1-->r2c8=7-->r2c3=2

First, is it still considered an XY-Loop if there's a non-bivalue cell, i.e., r2c8?

As to eliminations, I feel confident about eliminating the 2 from r9c3. What about the 8s from c8? Can I eliminate 8 from c8r289? I think I've got the eliminations down pretty well when all cells are bivalue, but I'm confused where there are polyvalue cells.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Fri Nov 19, 2010 10:09 pm    Post subject: Reply with quote

Marty,

This is some kind of loop, but not an XY-loop. I don't know what to call it.

First, you are not done with basics. If you were, the puzzle reveals an XYZ-wing and then an XY-wing to solve it.

But, to return to your question. In the cells you quote, we have the following:

If R7C3 = 5: (Counterclockwise)
Code:
+-------------+-----------+------------+
| 6  247  8   | 5  24  1  | 249 79  3  |
| 34 127  @2  | 9  238 6  | 5   @7  24 |
| 5  1234 9   | 23 7   48 | 248 @1  6  |
+-------------+-----------+------------+
| 2  5    4   | 8  1   7  | 6   3   9  |
| 1  9    3   | 6  5   2  | 7   4   8  |
| 8  67   67  | 4  9   3  | 1   2   5  |
+-------------+-----------+------------+
| 7  2348 *5  | 23 6   9  | 248 @8  1  |
| 34 268  1   | 7  238 5  | 289 689 24 |
| 9  2468 256 | 1  248 48 | 3   568 7  |
+-------------+-----------+------------+


If R7C3 = 2: (Clockwise)
Code:
+-------------+-----------+------------+
| 6  247  8   | 5  24  1  | 249 79  3  |
| 34 127  @7  | 9  238 6  | 5   @18 24 |
| 5  1234 9   | 23 7   48 | 248 18  6  |
+-------------+-----------+------------+
| 2  5    4   | 8  1   7  | 6   3   9  |
| 1  9    3   | 6  5   2  | 7   4   8  |
| 8  67   67  | 4  9   3  | 1   2   5  |
+-------------+-----------+------------+
| 7  2348 *2  | 23 6   9  | 248 @5  1  |
| 34 268  1   | 7  238 5  | 289 689 24 |
| 9  2468 256 | 1  248 48 | 3   568 7  |
+-------------+-----------+------------+

Pincers on:
1: R23C8
2: R27C3
5: R7C38
7: R2C38
8: R237C8

and there are a number of eliminations. Unfortunately, they do not seem to progress the puzzle.

If you made an error, look closely at what you have for pincers on 8.

> Can I eliminate 8 from c8r289?

Not from c8r2.

I hope this helps.

Keith

PS: By the way, your grid after all basics:
Code:

+----------------+----------------+----------------+
| 6    247  8    | 5    24   1    | 249  79   3    |
| 34   127  27   | 9    238  6    | 5    178  24   |
| 5    1234 9    | 23   7    48   | 248  18   6    |
+----------------+----------------+----------------+
| 2    5    4    | 8    1    7    | 6    3    9    |
| 1    9    3    | 6    5    2    | 7    4    8    |
| 8    67   67   | 4    9    3    | 1    2    5    |
+----------------+----------------+----------------+
| 7    34   25   | 23   6    9    | 248  58   1    |
| 34   268  1    | 7    238  5    | 29   69   24   |
| 9    268  256  | 1    248  48   | 3    56   7    |
+----------------+----------------+----------------+
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Fri Nov 19, 2010 10:52 pm    Post subject: Reply with quote

Code:
 Marty's Grid
 +-------------+-----------+------------+
 | 6  247  8   | 5  24  1  | 249 79  3  |
 | 34 127  27  | 9  238 6  | 5   178 24 |
 | 5  1234 9   | 23 7   48 | 248 18  6  |
 +-------------+-----------+------------+
 | 2  5    4   | 8  1   7  | 6   3   9  |
 | 1  9    3   | 6  5   2  | 7   4   8  |
 | 8  67   67  | 4  9   3  | 1   2   5  |
 +-------------+-----------+------------+
 | 7  2348 25  | 23 6   9  | 248 58  1  |
 | 34 268  1   | 7  238 5  | 289 689 24 |
 | 9  2468 256 | 1  248 48 | 3   568 7  |
 +-------------+-----------+------------+

This is not an XY-Loop. Depending on how you write the logic ...

Code:
 (2=5)r7c3 - (5=8)r7c8 - (18=7)r32c8 - (7=2)r2c3 - loop

... you have a loop where the formation of the <18> pair in r23c8 must be taken into account in the clockwise direction.

Code:
 Counter-clockwise: r7c3=5
 *-----------------------------------------------------------*
 | 6     47    8     | 5     24    1     | 249   9     3     |
 | 34    1    d2     | 9     38    6     | 5    c7     4     |
 | 5     34    9     | 23    7     48    | 248  c1     6     |
 |-------------------+-------------------+-------------------|
 | 2     5     4     | 8     1     7     | 6     3     9     |
 | 1     9     3     | 6     5     2     | 7     4     8     |
 | 8     67    67    | 4     9     3     | 1     2     5     |
 |-------------------+-------------------+-------------------|
 | 7     234  a5     | 23    6     9     | 24   b8     1     |
 | 34    268   1     | 7     238   5     | 29    69    24    |
 | 9     2468  6     | 1     248   48    | 3     56    7     |
 *-----------------------------------------------------------*

Code:
 Clockwise: r7c3=2
 *-----------------------------------------------------------*
 | 6     24    8     | 5     24    1     | 249   79    3     |
 | 34    12   b7     | 9     238   6     | 5    c18    24    |
 | 5     1234  9     | 23    7     48    | 24   c18    6     |
 |-------------------+-------------------+-------------------|
 | 2     5     4     | 8     1     7     | 6     3     9     |
 | 1     9     3     | 6     5     2     | 7     4     8     |
 | 8     67    6     | 4     9     3     | 1     2     5     |
 |-------------------+-------------------+-------------------|
 | 7     348  a2     | 3     6     9     | 48   d5     1     |
 | 34    68    1     | 7     238   5     | 289   69    24    |
 | 9     468   56    | 1     248   48    | 3     6     7     |
 *-----------------------------------------------------------*

Code:
 Eliminations: r9c3<>2, r89c8<>8   &   r2c2<>7 thanks to Keith


Last edited by daj95376 on Fri Nov 19, 2010 11:10 pm; edited 2 times in total
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Fri Nov 19, 2010 11:06 pm    Post subject: Reply with quote

daj95376 wrote:

Code:
 Eliminations: r9c3<>2, r89c8<>8


How about r2c2<>7?

Keith
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Fri Nov 19, 2010 11:11 pm    Post subject: Reply with quote

keith wrote:
daj95376 wrote:

Code:
 Eliminations: r9c3<>2, r89c8<>8

How about r2c2<>7?

You caught me sleeping. _ Embarassed _

I updated my post.
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Nov 19, 2010 11:57 pm    Post subject: Reply with quote

Thanks Keith and Danny. My invalid elimination of 8 from r2c8 was based on what Danny told me in another thread:

"Instead of getting technical, I'm going to provide a "do this" answer.

* Look at each assignment and its corresponding elimination(s) in the loop.

* Delete that value from any cells that see the assignment and elimination cells."

I considered the 8 to be an assignment and elimination. Danny did go on to say additional instructions would be needed in loops more complicated than XY-Loops, which this obviously is.

Quote:
First, you are not done with basics.

I'm sure I'll kick myself, but even knowing I'm not done, I'm still not seeing it. Embarassed
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sat Nov 20, 2010 12:25 am    Post subject: Reply with quote

Marty R. wrote:
My invalid elimination of 8 from r2c8 was based on what Danny told me in another thread:

"Instead of getting technical, I'm going to provide a "do this" answer.

* Look at each assignment and its corresponding elimination(s) in the loop.

* Delete that value from any cells that see the assignment and elimination cells."

I considered the 8 to be an assignment and elimination.

In defense of my instructions in the other thread, it was based on the assumption of a chain. You stepped outside that assumption when you used r7c8=8 and r3c8=1 to perform r2c8<>18=7. You were then incorporating network logic because r2c8=7 does not follow from r3c8=1 alone. The easiest way for me to get around your network was to alter the representation. I did this through an ALS in the chain that I wrote above.

Regards, Danny

FWIW: When I wrote my first Sudoku solver, I spent what seemed like countless hours on the chain() routine... only to discover that it was useless because I had implemented network logic by mistake.


Last edited by daj95376 on Sat Nov 20, 2010 12:47 am; edited 1 time in total
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Nov 20, 2010 12:47 am    Post subject: Reply with quote

Marty R. wrote:

Quote:
First, you are not done with basics.

I'm sure I'll kick myself, but even knowing I'm not done, I'm still not seeing it. Embarassed

Marty, your grid:
Code:
+----------------+----------------+----------------+
| 6    247  8    | 5    24   1    | 249  79   3    |
| 34   127  27   | 9    238  6    | 5    178  24   |
| 5    1234 9    | 23   7    48   | 248  18   6    |
+----------------+----------------+----------------+
| 2    5    4    | 8    1    7    | 6    3    9    |
| 1    9    3    | 6    5    2    | 7    4    8    |
| 8    67   67   | 4    9    3    | 1    2    5    |
+----------------+----------------+----------------+
| 7    2348 25   | 23   6    9    | 248  58   1    |
| 34   268  1    | 7    238  5    | 289  689  24   |
| 9    2468 256  | 1    248  48   | 3    568  7    |
+----------------+----------------+----------------+

R9C2 is not 4.
R7C2 r8C1 are a hidden pair 34.
R89B8 are not 8.
That completes the basics. There is an XYZ-wing -249 in R3C7, leading to an XY-wing -234 in R2C3.

None of this changes the discussion above.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Nov 20, 2010 1:56 am    Post subject: Reply with quote

Quote:
R9C2 is not 4.
R7C2 r8C1 are a hidden pair 34.
R89B8 are not 8.
That completes the basics.

I hate to be a pest, but I'm not seeing it. Of course, if r9c2<>4, then I see the hidden pair or, more appropriate for me, a 2568 quad. But I don't know why r9c2<>4 nor why r89b8<>8. I've looked and looked and see nothing in subsets or locked candidates. Question Question
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Nov 20, 2010 2:07 am    Post subject: Reply with quote

Marty,

The 4 in R9 is in B8 ...

Then, after the 34 pair, the 8 in R7 is in B9.

(Or, the 4 in B8 is in R9, and the 8 in B9 is in R7.)

I am going from the grid you posted, quoted above.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Nov 20, 2010 2:21 am    Post subject: Reply with quote

How could I miss those 4s in box 8? Thanks again. Embarassed Embarassed
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Solving techniques, and terminology All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group