View previous topic :: View next topic |
Author |
Message |
wapati
Joined: 10 Jun 2008 Posts: 472 Location: Brampton, Ontario, Canada.
|
Posted: Mon Apr 18, 2011 1:54 am Post subject: Twisty |
|
|
This one has a long path, for me.
Code: | . . 1|. . .|. 5 4
. . .|. . 8|. . 9
9 . .|4 . .|. 2 7
-----+-----+-----
. . .|. . 3|6 1 .
. . .|. 8 .|. . .
. 5 4|1 . .|. . .
-----+-----+-----
5 9 .|. . 7|. . 1
4 . .|3 . .|. . .
2 6 .|. . .|7 . . |
|
|
Back to top |
|
|
Marty R.
Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
|
Posted: Mon Apr 18, 2011 6:04 pm Post subject: |
|
|
I had to hack away at this before it mercifully came to an end.
XY-Wing
Type 1 UR
Multi-coloring
W-Wing
Coloring
ER
XY-Chain |
|
Back to top |
|
|
tlanglet
Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
|
Posted: Mon Apr 18, 2011 8:16 pm Post subject: |
|
|
A fun three step solution..........
#1: AUR(37)r12c15 external sis: r6c1=3,r6c5=7; r6c9<>3, r2c5<>7, r6c1<>7
#2: Type 1 UR(38)r13c27; r1c2<>38 which opens a
#3: axy-wing(27-3) vertex (27)r1c2 with fin (7)r5c2; r3c2<>3
If fin is true: (7)r5c2-(7=8)r4c1-r4c2=(8)r3c2;
Ted |
|
Back to top |
|
|
peterj
Joined: 26 Mar 2010 Posts: 974 Location: London, UK
|
Posted: Mon Apr 18, 2011 8:39 pm Post subject: |
|
|
There's a nice anp/xy-chain that cracks it...
Code: | anp(26=7)r76c6 - (7=3)r6c8 - (3=4)r7c8 - (4=2)r7c7 - (2=6)r7c5 ; r13c5<>6 |
|
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Mon Apr 18, 2011 10:34 pm Post subject: |
|
|
From reducing my solver's solution: two-stepper
Code: | +-----------------------------------------------------------------------+
| 3678 2378 1 | 2679 23679 269 | 38 5 4 |
| 37 4 25 | 257 2357 8 | 1 6 9 |
| 9 38 56 | 4 56 1 | 38 2 7 |
|-----------------------+-----------------------+-----------------------|
| 78 278 29 | 2579 4 3 | 6 1 258 |
| 1 237 269 | 25679 8 2569 | 45 347 235 |
| 3678 5 4 | 1 267 26 | 9 37 238 |
|-----------------------+-----------------------+-----------------------|
| 5 9 38 | 268 26 7 | 24 34 1 |
| 4 1 7 | 3 259 259 | 25 8 6 |
| 2 6 38 | 58 1 4 | 7 9 35 |
+-----------------------------------------------------------------------+
# 75 eliminations remain
extraneous: X-Wing, XY-Wing, XYZ-Wing, UR Type 1
r3c1 2-String Kite <> 6 r6c5
+-----------------------------------------------------------------------+
| c3678 2378 1 | 2679 23679 269 | 38 5 4 |
| 37 4 25 | 257 2357 8 | 1 6 9 |
| 9 38 d56 | 4 e56 1 | 38 2 7 |
|-----------------------+-----------------------+-----------------------|
| 78 278 29 | 2579 4 3 | 6 1 258 |
| 1 237 269 | 25679 8 2569 | 45 347 235 |
| b3678 5 4 | 1 7-2 a26 | 9 37 238 |
|-----------------------+-----------------------+-----------------------|
| 5 9 38 | 268 f26 7 | 24 34 1 |
| 4 1 7 | 3 259 59-2 | 25 8 6 |
| 2 6 38 | 58 1 4 | 7 9 35 |
+-----------------------------------------------------------------------+
# 74 eliminations remain
W-Wing: (2=6)r6c6 - r6c1 = r1c1 - r3c3 = r3c5 - (6=2)r7c5 => r6c5,r8c6<>2
|
The same cells and value used for the Kite are also used by the W-Wing. In fact, this could be considered a single-stepper if you include the elimination from the embedded Kite among the eliminations for the W-Wing. |
|
Back to top |
|
|
|