dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Free Press Sep 30, 2011

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Fri Sep 30, 2011 9:00 pm    Post subject: Free Press Sep 30, 2011 Reply with quote

May be many steps ...
Code:
Puzzle: FP093011
+-------+-------+-------+
| 6 . . | 2 3 . | . . 8 |
| . . . | 5 . . | . . . |
| 3 5 . | 8 . 7 | . . 2 |
+-------+-------+-------+
| . . 8 | . . . | . 3 . |
| 5 . 3 | . . . | 2 . 6 |
| . 9 . | . . . | 8 . . |
+-------+-------+-------+
| . . . | 1 . 9 | . 7 5 |
| . . . | . . 4 | . . . |
| . . . | . 7 5 | . . 3 |
+-------+-------+-------+

Play this puzzle online at the Daily Sudoku site

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Sep 30, 2011 11:26 pm    Post subject: Reply with quote

OK, I hope I didn't screw this up. ABCDEFGH are a potential DP on 28. R7c1=4 or r2c1=149, which combines with other cells in that box to form a 1479 quad. Several cells are a common outcome, solving the puzzle.

Code:
+-------------------+-----------+---------------+
| 6      47   479   |2   3    1 | 57  459  8    |
| 12489A 28B  12479 |5   49   6 | 3   149  1479 |
| 3      5    149   |8   49   7 | 19  6    2    |
+-------------------+-----------+---------------+
| 14     16   8     |479 56   2 | 57  3    1479 |
| 5      47   3     |479 1    8 | 2   49   6    |
| 124    9    12467 |47  56   3 | 8   145  147  |
+-------------------+-----------+---------------+
| 248C   3    246   |1   28D  9 | 46  7    5    |
| 7      16   5     |3   28E  4 | 169 28F  19   |
| 149    28G  149   |6   7    5 | 14  28H  3    |
+-------------------+-----------+---------------+
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Oct 01, 2011 1:10 am    Post subject: Reply with quote

Marty,

Your DP is correct, but I do not see how it solves the puzzle.
Code:
+-------------------+-------------------+-------------------+
| 6     47    479   | 2     3     1     | 57    459   8     |
|28+149  28    12479 | 5     49    6     | 3     149   1479  |
| 3     5     149   | 8     49    7     | 19    6     2     |
+-------------------+-------------------+-------------------+
| 14a   16    8     | 479   56    2     | 57    3     1479  |
| 5     47    3     | 479   1     8     | 2     49    6     |
|2-14   9     12467 | 47    56    3     | 8     145   147   |
+-------------------+-------------------+-------------------+
|28+4   3     246   | 1     28    9     | 46    7     5     |
| 7     16    5     | 3     28    4     | 169   28    19    |
| 149b  28    149   | 6     7     5     | 14    28    3     |
+-------------------+-------------------+-------------------+

Type 3: To break the DP, there is a pseudocell 149 in R27C1. It makes a triple with ab, eliminating 14 in R6C1.

Type 4: One of R27C1 must be 8. Neither can be 2.

Leaving me here:
Code:
+-------------------+-------------------+-------------------+
| 6     47    479   | 2     3     1     | 57    459   8     |
| 1489  28    12479 | 5     49    6     | 3     149   1479  |
| 3     5     149   | 8     49    7     | 19    6     2     |
+-------------------+-------------------+-------------------+
| 14    16    8     | 479   56    2     | 57    3     1479  |
| 5     47    3     | 479   1     8     | 2     49    6     |
| 2     9     1467  | 47    56    3     | 8     145   147   |
+-------------------+-------------------+-------------------+
| 48    3     246   | 1     28    9     | 46    7     5     |
| 7     16    5     | 3     28    4     | 169   28    19    |
| 149   28    149   | 6     7     5     | 14    28    3     |
+-------------------+-------------------+-------------------+

Keith

Go, Tigers!
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Oct 01, 2011 1:46 am    Post subject: Reply with quote

Keith, I'll look further later. However, I looked at the 149 in r2c1 as combining with other cells in that box to form a 1479 quad, setting r2c3=2. Carrying that further and comparing the results to what I got when I tried r7c1=4, yielded several common outcomes which solved it.
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Oct 01, 2011 3:37 am    Post subject: Reply with quote

Keith, I still get the same result. Common outcomes solve the puzzle.

I do appreciate the fact that you post these.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Oct 01, 2011 9:38 am    Post subject: Reply with quote

Marty R. wrote:
Keith, I still get the same result. Common outcomes solve the puzzle.

Marty, I'll agree, for example, that 4 in R7C1 or 2 in R2C3 both drive 6 in R4C2, which solves the puzzle.

IMHO, something of a stretch.

Keith
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Oct 01, 2011 10:41 am    Post subject: Reply with quote

After basics, an XYZ-wing takes out 9 in R1B8. That sets up a W-wing -14 in B14 that takes out 1 in R2C1 and solves the puzzle.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Oct 01, 2011 3:56 pm    Post subject: Reply with quote

Quote:
Marty, I'll agree, for example, that 4 in R7C1 or 2 in R2C3 both drive 6 in R4C2, which solves the puzzle.

IMHO, something of a stretch.

I guess by a stretch, you mean that the chains get extended longer than you'd prefer before a common outcome is seen.

As to the XYZ- and W-Wings, I never got that far, being fascinated by an eight-cell DP.
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 398

PostPosted: Sat Oct 01, 2011 4:46 pm    Post subject: Reply with quote

Marty R. wrote:
Quote:
Marty, I'll agree, for example, that 4 in R7C1 or 2 in R2C3 both drive 6 in R4C2, which solves the puzzle.

IMHO, something of a stretch.

I guess by a stretch, you mean that the chains get extended longer than you'd prefer before a common outcome is seen.

For that "stretch", did anyone have anything shorter than this?

(1=4)r4c1 - BUG-Lite:[(4)r7c1 = (2-7)r2c3] = (7)r2c9 - (7)r1c7 = (7-5)r4c7 = (5-6)r4c7 = (6)r4c2 ==> r4c2<>1
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Sat Oct 01, 2011 6:24 pm    Post subject: Reply with quote

ronk wrote:
(1=4)r4c1 - BUG-Lite:[(4)r7c1 = (2-7)r2c3] = (7)r2c9 - (7)r1c7 = (7-5)r4c7 = (5-6)r4c7 = (6)r4c2 ==> r4c2<>1


Beautiful! Very Happy

shouldn't the (5-6)r4c7 be (5-6)r4c5?

Nice find.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Oct 01, 2011 6:40 pm    Post subject: Reply with quote

ronk wrote:
Marty R. wrote:
Quote:
Marty, I'll agree, for example, that 4 in R7C1 or 2 in R2C3 both drive 6 in R4C2, which solves the puzzle.

IMHO, something of a stretch.

I guess by a stretch, you mean that the chains get extended longer than you'd prefer before a common outcome is seen.

For that "stretch", did anyone have anything shorter than this?

(1=4)r4c1 - BUG-Lite:[(4)r7c1 = (2-7)r2c3] = (7)r2c9 - (7)r1c7 = (7-5)r4c7 = (5-6)r4c7 = (6)r4c2 ==> r4c2<>1

Ron, I had:

a) R7C1=4; R4C1=1; R4C2=6.
b) R3C3=2; R2C9=7; R4C5=5; R4C2=6.

I think it's the same as yours.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Oct 01, 2011 7:00 pm    Post subject: Reply with quote

Being notationally challenged, I have no idea of what Ron's chain is.

With the 1479 quad in box 1, r2c3=2-->r2c9=7-->r1c7=5

R7c1=4-->r4c1=1-->r4c2=6-->r4c5=5-->r4c7=7-->r1c7=5

R1c7=5 solves it.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sat Oct 01, 2011 10:04 pm    Post subject: Reply with quote

Aaaaagh!!! I just burned out half of my brain cells! Now there's only one left. _ Laughing _

Code:
 after basics
 +------------------------------------------------------------------------+
 |  6       47     479    |  2      3      1      |  57     459    8      |
 | *28+149 *28     12479  |  5      49     6      |  3      149    1479   |
 |  3       5      149    |  8      49     7      |  19     6      2      |
 |------------------------+-----------------------+-----------------------|
 |  14      16     8      |  479    56     2      |  57     3      1479   |
 |  5       47     3      |  479    1      8      |  2      49     6      |
 |  124     9      12467  |  47     56     3      |  8      145    147    |
 |------------------------+-----------------------+-----------------------|
 | *28+4    3      246    |  1     *28     9      |  46     7      5      |
 |  7       16     5      |  3     *28     4      |  169   *28     19     |
 |  149    *28     149    |  6      7      5      |  14    *28     3      |
 +------------------------------------------------------------------------+
 # 69 eliminations remain

(194)r2c1=DP=r7c1-(4=91)r9c13-r8c2=r4c2-(1=4)r4c1-r27c1=DP=(19)r2c1 => r2c1<>28

Yes, it would be simpler/smarter to derive r7c1<>4 first, and then derive r2c1<>28. But, no one seems to post simpler/smarter solutions anymore.

Marty: Thanks for spotting the DP!!!
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 398

PostPosted: Sun Oct 02, 2011 2:03 pm    Post subject: Reply with quote

daj95376 wrote:
(194)r2c1=DP=r7c1- (4=91)r9c13-r8c2=r4c2-(1=4)r4c1 -r27c1=DP=(19)r2c1 => r2c1<>28
...
Yes, it would be simpler/smarter to derive r7c1<>4 first, and then derive r2c1<>28. But, no one seems to post simpler/smarter solutions anymore.

r7c1<>4 is what you did (in blue). Smile
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sun Oct 02, 2011 3:36 pm    Post subject: Reply with quote

ronk wrote:
r7c1<>4 is what you did.

Almost. r7c1<>4 is what I could/should have done for a two-stepper.

Code:
(4=91)r9c13-(1=6)r8c2-(6=1)r4c2-(1=4)r4c1 => r7c1<>4

DP on <28> => r2c1=149 => r2c1<>28

Instead, I created a messy single-stepper. _ Sad _
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group