dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Free Press December 23, 2011

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Fri Dec 23, 2011 8:24 pm    Post subject: Free Press December 23, 2011 Reply with quote

Not yet started:
Code:
Puzzle: FP122311
+-------+-------+-------+
| . . . | . 7 . | . . 9 |
| . . 6 | . . 2 | . 8 . |
| . 9 . | . . . | . . 1 |
+-------+-------+-------+
| . . . | . 3 5 | 8 9 . |
| 9 . . | . . . | . . 7 |
| . 3 4 | . . . | 2 . . |
+-------+-------+-------+
| 8 . . | 1 . . | . 7 . |
| . 4 . | 6 . . | 5 . . |
| 7 . . | . 5 . | . . . |
+-------+-------+-------+

Play this puzzle online at the Daily Sudoku site

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Dec 24, 2011 12:20 am    Post subject: Reply with quote

Looking at the potential 35 DP in boxes 12, one of r13c1=4 or r3c4=8. Common outcome; r1c3, r2c2, r3c3=172.

Code:

+-----------+------------+----------+
| 345 8  12 | 35  7  146 | 46  25 9 |
| 45  17 6  | 59  19 2   | 47  8  3 |
| 345 9  27 | 358 68 468 | 467 25 1 |
+-----------+------------+----------+
| 2   17 17 | 4   3  5   | 8   9  6 |
| 9   5  8  | 2   16 16  | 3   4  7 |
| 6   3  4  | 7   89 89  | 2   1  5 |
+-----------+------------+----------+
| 8   6  5  | 1   4  3   | 9   7  2 |
| 1   4  9  | 6   2  7   | 5   3  8 |
| 7   2  3  | 89  5  89  | 1   6  4 |
+-----------+------------+----------+

Play this puzzle online at the Daily Sudoku site
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Dec 24, 2011 5:56 am    Post subject: Reply with quote

Marty R. wrote:
Looking at the potential 35 DP in boxes 12, one of r13c1=4 or r3c4=8. Common outcome; r1c3, r2c2, r3c3=172.

Code:

+-----------+------------+----------+
| 345 8  12 | 35  7  146 | 46  25 9 |
| 45  17 6  | 59  19 2   | 47  8  3 |
| 345 9  27 | 358 68 468 | 467 25 1 |
+-----------+------------+----------+
| 2   17 17 | 4   3  5   | 8   9  6 |
| 9   5  8  | 2   16 16  | 3   4  7 |
| 6   3  4  | 7   89 89  | 2   1  5 |
+-----------+------------+----------+
| 8   6  5  | 1   4  3   | 9   7  2 |
| 1   4  9  | 6   2  7   | 5   3  8 |
| 7   2  3  | 89  5  89  | 1   6  4 |
+-----------+------------+----------+

Play this puzzle online at the Daily Sudoku site
Marty,

I don't like your solution, if you don;t mind me saying so. When I run R3C4=8, I get different results in the three cells you mention.

Now, certainly, R13C4=4 and/or R3C4=8. After any number of steps, and by any path, if you can show (for example) that R1C3=1, then indeed R3C1=1.

However, you can also assume R3C4=8 and show R3C1=2.

Let me put is in a different way. I don't like your solution for the same reason I believe you would not like the Almost Naked Pair 35 in R13C4.

Since I do also not like chains that are not patterns, I now have a problem.

Bah! Humbug!

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Dec 24, 2011 6:18 am    Post subject: Reply with quote

Quote:
When I run R3C4=8, I get different results in the three cells you mention.

Keith, I stand by my solution. An 8 in r3c4 yields a 7 in r3c7 and 2 in r3c3.
Quote:
I don't like your solution, if you don;t mind me saying so.

I don't mind you saying so at all. And if my statement above is incorrect, I'd want to know about it. I always want input if it's not an insult and has the potential to improve my game.

I'd have probably been happier with some other solution, but I have to do what I have to do in order to solve puzzles.

But just for the sake of argument, a couple of years ago I asked you about a UR you used, claiming that it looked like a Forcing Chain which you were led to by a potential UR. You replied that you saw nothing wrong with spotting a pattern and then examining the ramifications of that pattern. Is that or is that not what I did?

At any rate, I'll say the same thing you said, that I hope you don't mind me saying what I said. I'm heading to bed but look forward to your reply Saturday.

Cheers!
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sat Dec 24, 2011 7:20 am    Post subject: Reply with quote

Hmmm!!! First off, my solver yields a more complex grid after basics.

Code:
 after basics
 +-----------------------------------------------------+
 | *35+4 8    12   | *35   7    146  |  46   25   9    |
 |  45   17   6    |  59   149  2    |  47   8    3    |
 | *35+4 9    27   | *35+8 468  468  |  467  25   1    |
 |-----------------+-----------------+-----------------|
 |  2    17   17   |  4    3    5    |  8    9    6    |
 |  9    5    8    |  2    16   16   |  3    4    7    |
 |  6    3    4    |  7    89   89   |  2    1    5    |
 |-----------------+-----------------+-----------------|
 |  8    6    5    |  1    24   3    |  9    7    24   |
 |  1    4    9    |  6    28   7    |  5    3    28   |
 |  7    2    3    |  89   5    489  |  1    6    48   |
 +-----------------------------------------------------+
 # 40 eliminations remain

You can use Marty's sequence:

(8)r3c4 - (8=467)r3c567 - (7=2)r3c3

And then derive:

(4)r13c1 - (4=5=9*=8=2=4)r2c1,r2c4,r9c4,r8c5,r7c5 - (*94=1)r2c5 - (1=7=2)r2c2,r3c3

Or you can use the contradiction to Marty's sequence:

(8)r3c4 - (8=461)r3c56,r1c6 - (1=2)r1c3

And create a single chain:

(8=461)r3c56,r1c6 - (1=2=7)r1c3,r3c3 - (746=8)r3c756 => r3c4<>8

The remaining UR Type 2 cracks the puzzle.
Back to top
View user's profile Send private message
SudoQ



Joined: 02 Aug 2011
Posts: 127

PostPosted: Sat Dec 24, 2011 8:41 am    Post subject: Reply with quote

If you like chains, it is easy to show that
r2c4=5 leads to a contradiction in r1(c7).

/SudoQ
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Sat Dec 24, 2011 8:48 am    Post subject: Reply with quote

A chain : "Wing" : ANP(9=45)r2c14-AHP(4r1c1=46r1c67)-1r1c6=1r2c5 => -9r2c5;stte

or

A pattern : ALS-XZ Rule : (X=1,Z=4) : ANP(4=17)r2c27-ANQ(1=2345)r1c1348 => -4r1c7, -4r2c1;stte
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Sat Dec 24, 2011 4:40 pm    Post subject: Reply with quote

JC Van Hay wrote:
A pattern : ALS-XZ Rule : (X=1,Z=4) : ANP(4=17)r2c27-ANQ(1=2345)r1c1348 => -4r1c7, -4r2c1;stte


Thanks JC,
I have struggled with this for a long time. You turned lights on for me.
Code:
 *--------------------------------------------------*
 |a345  8   a12   |a35   7    146  | 6-4 a25   9    |
 | 5-4 b17   6    | 59   149  2    |b47   8    3    |
 | 345  9    27   | 358  468  468  | 467  25   1    |
 |----------------+----------------+----------------|
 | 2    17   17   | 4    3    5    | 8    9    6    |
 | 9    5    8    | 2    16   16   | 3    4    7    |
 | 6    3    4    | 7    89   89   | 2    1    5    |
 |----------------+----------------+----------------|
 | 8    6    5    | 1    24   3    | 9    7    24   |
 | 1    4    9    | 6    28   7    | 5    3    28   |
 | 7    2    3    | 89   5    489  | 1    6    48   |
 *--------------------------------------------------*
als-xz(x=1,z=4):anq(1=2345)r1c1348-anp(4=17)r2c27 => r1c7,r2c1<>4

(1)a=(4)b;r2c7=4;
(1)b=(4)a;r1c1=4; => r1c7,r2c1<>4
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Dec 24, 2011 4:51 pm    Post subject: Reply with quote

Quote:
Hmmm!!! First off, my solver yields a more complex grid after basics.

Danny, I did this three times (once with pencil and paper and twice on Draw/Play) and got three different post-basics grids. However, on my last attempt (on Draw/Play) it agreed with yours. Embarassed
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sat Dec 24, 2011 5:02 pm    Post subject: Reply with quote

Use of an atypical UR strong inference.

Code:
 after basics
 +-----------------------------------------------------+
 | *35+4 8    12   | *35   7    146  |  6-4  25   9    |
 |  5-4  17   6    |  59   149  2    |  47   8    3    |
 | *35+4 9    27   | *35+8 468  468  |  467  25   1    |
 |-----------------+-----------------+-----------------|
 |  2    17   17   |  4    3    5    |  8    9    6    |
 |  9    5    8    |  2    16   16   |  3    4    7    |
 |  6    3    4    |  7    89   89   |  2    1    5    |
 |-----------------+-----------------+-----------------|
 |  8    6    5    |  1    24   3    |  9    7    24   |
 |  1    4    9    |  6    28   7    |  5    3    28   |
 |  7    2    3    |  89   5    489  |  1    6    48   |
 +-----------------------------------------------------+
 # 40 eliminations remain

 (4=7)r2c7 - (7=468)r3c567 - (48)r3c14 =UR= (4)r1c1  =>  r1c7,r2c1<>4
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Sat Dec 24, 2011 6:27 pm    Post subject: Reply with quote

More als views

als xy=wing
Code:
 *--------------------------------------------------*
 |a345  8   a12   |a35   7    146  | 6-4 a25   9    |
 | 5-4 c17   6    | 59   149  2    |b47   8    3    |
 | 345  9    27   | 358  468  468  | 467  25   1    |
 |----------------+----------------+----------------|
 | 2    17   17   | 4    3    5    | 8    9    6    |
 | 9    5    8    | 2    16   16   | 3    4    7    |
 | 6    3    4    | 7    89   89   | 2    1    5    |
 |----------------+----------------+----------------|
 | 8    6    5    | 1    24   3    | 9    7    24   |
 | 1    4    9    | 6    28   7    | 5    3    28   |
 | 7    2    3    | 89   5    489  | 1    6    48   |
 *--------------------------------------------------*
als-xy-wing(xy=17):anq(1=2345)r1c1348-(4=7)r2c7-(7=1)r2c2 => r1c7,r2c1<>4

(1)a=(7)c=(4)b;r2c7=4;
(7)b=(1)c=(4)a;r1c1=4; => r1c7,r2c1<>4

And then an als-chain
Code:
 *--------------------------------------------------*
 |a345  8   a12   |b35   7    146  | 6-4 b25   9    |
 | 5-4 d17   6    | 59   149  2    |c47   8    3    |
 | 345  9    27   | 358  468  468  | 467  25   1    |
 |----------------+----------------+----------------|
 | 2    17   17   | 4    3    5    | 8    9    6    |
 | 9    5    8    | 2    16   16   | 3    4    7    |
 | 6    3    4    | 7    89   89   | 2    1    5    |
 |----------------+----------------+----------------|
 | 8    6    5    | 1    24   3    | 9    7    24   |
 | 1    4    9    | 6    28   7    | 5    3    28   |
 | 7    2    3    | 89   5    489  | 1    6    48   |
 *--------------------------------------------------*
als-chain:ant(4=35)r1c14-ant(5=12)r1c38-(1=7)r2c2-(7=4)r2c7 => r1c7,r2c1<>4

I like better

(4=35)r1c14-(5=12)r1c38-(1=7)r2c2-(7=4)r2c7 => r1c7,r2c1<>4
edit typo

Last edited by arkietech on Sat Dec 24, 2011 9:11 pm; edited 1 time in total
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Dec 24, 2011 8:50 pm    Post subject: Reply with quote

For what it's worth. After basics:
Code:
+-------------+-------------+-------------+
| 345 8  D12  | 35  7   146 | 46 C25  9   |
|c45 e17  6   |b59  149 2   |d47  8   3   |
|A345 9   27  |*358 468 468 |467 B25  1   |
+-------------+-------------+-------------+
| 2   17  17  | 4   3   5   | 8   9   6   |
| 9   5   8   | 2   16  16  | 3   4   7   |
| 6   3   4   | 7   89  89  | 2   1   5   |
+-------------+-------------+-------------+
| 8   6   5   | 1   24  3   | 9   7   24  |
| 1   4   9   | 6   28  7   | 5   3   28  |
| 7   2   3   |a89  5   489 | 1   6   48  |
+-------------+-------------+-------------+

If R3C4=8:
1) Cell a=9; b=5; c=4; d=7; e=1.
and
2) Cell A=3; B=5; C=2; D=1.

D and e cannot both be 1. Thus, R3C4<>8, and the puzzle is solved.

What follows is simply my opinion:

There's nothing wrong with this solution, I just don't like it. And, the longer the implication chains, the more I dislike it.

Sure, you can justify looking at whether R3C4=8 because of the UR, or because of the almost pair 35 in C4, but remember: Every bivalue cell is a finned single, or an "almost" single. Yet I would regard an almost single as simple trial and error.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Dec 24, 2011 10:49 pm    Post subject: Reply with quote

Keith,

If you have a Type 3, say, AB-AB-ABC-ABD, do you not look at the implications of C and D being true? How is that different from the UR here?

By the way, I also found that r3c4=8 leads to an invalidity. But here I've fallen under the influence of Ronk who has posited that common outcomes are more satisfying than invalidities. Thus, I didn't use the invalidity, rather I extended the chain to achieve a common outcome.

I agree that shorter chains are more satisfying than longer ones, but I had no choice. All the other posters are using ALS's or various Eureka-notated solutions which I don't understand.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Dec 24, 2011 11:28 pm    Post subject: Reply with quote

Marty,

Go watch the Lions. This is pretty impressive. (I did not watch the Bills.)

Quote:
do you not look at the implications of C and D being true?


Well, actually, it's C or D, though C and D are permitted.

It's the length of the implication chain I find less than satisfying. (Not that there's anything wrong with that.)

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Dec 24, 2011 11:51 pm    Post subject: Reply with quote

The Lions weren't on here and the Bills were blacked out so we were offered the Evil Empire (Pats) at 1:00 and the Eagles-Cowboys at 4:00.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group