dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Vanhegan 12 Jul 2011 Fiendish 2.2.1.1

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Mon Feb 20, 2012 6:46 pm    Post subject: Vanhegan 12 Jul 2011 Fiendish 2.2.1.1 Reply with quote

The last move on this one has me stumped.

Code:

+-------+-------+-------+
| 4 . 7 | . 5 1 | . . 2 |
| . . . | 3 8 . | . . . |
| . . . | 2 . 6 | . . 1 |
+-------+-------+-------+
| 1 . 6 | . . . | 2 9 . |
| 7 5 . | . . . | . 1 3 |
| . 3 2 | . . . | 6 . 7 |
+-------+-------+-------+
| 6 . . | 1 . 8 | . . . |
| . . . | . 6 5 | . . . |
| 5 . . | 7 9 . | 1 . 4 |
+-------+-------+-------+

Play this puzzle online at the Daily Sudoku site

Keith


Last edited by keith on Mon Feb 20, 2012 10:32 pm; edited 1 time in total
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Mon Feb 20, 2012 9:35 pm    Post subject: Reply with quote

#1. M Wing : (8=3)r9c3-3r8c1=(3-8)r3c1=8r6c1 => -8r5c3; 15 Singles
#2. ALS-XY Wing : (982)r39c2-(2374)r249c6-(49)r2c7 => -9r2c12.r3c7; stte
or
#2. 5-SIS AIC : 5r2c3=(5-7)r2c8=7r2c6-(7=3)r4c6-3r9c6=3r9c3-(3=1)r8c3 => -1r2c3; stte
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Tue Feb 21, 2012 12:09 am    Post subject: Reply with quote

I used three XY-Wings and an XY-Chain.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Tue Feb 21, 2012 5:12 am    Post subject: Reply with quote

This puzzle has the strangest ending that I've encountered in quite awhile.

Code:
 after basics and 2x XY-Wing
 +-----------------------------------------------------+
 |  4    6    7    |  9    5    1    |  3    8    2    |
 |  2    19   15   |  3    8    47   |  49   57   6    |
 |  39   89   358  |  2    47   6    |  49   57   1    |
 |-----------------+-----------------+-----------------|
 |  1    4    6    |  8    37   37   |  2    9    5    |
 |  7    5    9    |  6    24   24   |  8    1    3    |
 |  8    3    2    |  5    1    9    |  6    4    7    |
 |-----------------+-----------------+-----------------|
 |  6    7    4    |  1    23   8    |  5    23   9    |
 |  39   129  13   |  4    6    5    |  7    23   8    |
 |  5    28   38   |  7    9    23   |  1    6    4    |
 +-----------------------------------------------------+
 # 26 eliminations remain

Consider r38c1=39. Either r3c1=3 and r8c1=9, or else r3c1=9 and r8c1=3.

If r3c1=3 and r8c1=9, then we've created a BUG !!!

Code:
 +-----------------------------------------------------+
 |  4    6    7    |  9    5    1    |  3    8    2    |
 |  2    19   15   |  3    8    47   |  49   57   6    |
 |  3    89   58   |  2    47   6    |  49   57   1    |
 |-----------------+-----------------+-----------------|
 |  1    4    6    |  8    37   37   |  2    9    5    |
 |  7    5    9    |  6    24   24   |  8    1    3    |
 |  8    3    2    |  5    1    9    |  6    4    7    |
 |-----------------+-----------------+-----------------|
 |  6    7    4    |  1    23   8    |  5    23   9    |
 |  9    12   13   |  4    6    5    |  7    23   8    |
 |  5    28   38   |  7    9    23   |  1    6    4    |
 +-----------------------------------------------------+

This leaves r3c1=9 and r8c1=3 to crack the puzzle.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Tue Feb 21, 2012 6:27 am    Post subject: Reply with quote

daj95376 wrote:
This puzzle has the strangest ending that I've encountered in quite awhile.

Code:
 after basics and 2x XY-Wing
 +-----------------------------------------------------+
 |  4    6    7    |  9    5    1    |  3    8    2    |
 |  2    19   15   |  3    8    47   |  49   57   6    |
 |  39   89   358  |  2    47   6    |  49   57   1    |
 |-----------------+-----------------+-----------------|
 |  1    4    6    |  8    37   37   |  2    9    5    |
 |  7    5    9    |  6    24   24   |  8    1    3    |
 |  8    3    2    |  5    1    9    |  6    4    7    |
 |-----------------+-----------------+-----------------|
 |  6    7    4    |  1    23   8    |  5    23   9    |
 |  39   129  13   |  4    6    5    |  7    23   8    |
 |  5    28   38   |  7    9    23   |  1    6    4    |
 +-----------------------------------------------------+
 # 26 eliminations remain

Consider r38c1=39. Either r3c1=3 and r8c1=9, or else r3c1=9 and r8c1=3.

If r3c1=3 and r8c1=9, then we've created a BUG !!!

Code:
 +-----------------------------------------------------+
 |  4    6    7    |  9    5    1    |  3    8    2    |
 |  2    19   15   |  3    8    47   |  49   57   6    |
 |  3    89   58   |  2    47   6    |  49   57   1    |
 |-----------------+-----------------+-----------------|
 |  1    4    6    |  8    37   37   |  2    9    5    |
 |  7    5    9    |  6    24   24   |  8    1    3    |
 |  8    3    2    |  5    1    9    |  6    4    7    |
 |-----------------+-----------------+-----------------|
 |  6    7    4    |  1    23   8    |  5    23   9    |
 |  9    12   13   |  4    6    5    |  7    23   8    |
 |  5    28   38   |  7    9    23   |  1    6    4    |
 +-----------------------------------------------------+

This leaves r3c1=9 and r8c1=3 to crack the puzzle.

Two XY-wings get me here:
Code:
+-------------+-------------+-------------+
| 4   6   7   | 9   5   1   | 3   8   2   |
| 2   19  15  | 3   8   47  | 49  57  6   |
| 39  89  358 | 2   47  6   | 49  57  1   |
+-------------+-------------+-------------+
| 1   4   6   | 8   37  37  | 2   9   5   |
| 7   5   9   | 6   24  24  | 8   1   3   |
| 8   3   2   | 5   1   9   | 6   4   7   |
+-------------+-------------+-------------+
| 6   7   4   | 1   23  8   | 5   23  9   |
| 39  129 13  | 4   6   5   | 7   23  8   |
| 5   28  38  | 7   9   23  | 1   6   4   |
+-------------+-------------+-------------+
There are two reasons I posted this:

1. This is not a BUG+n.
2. The chains are quite long, and I see no hint of a pattern to give me a clue. (I have yet to look at JC's M-wing.)

Danny, I do not think your logic is correct. Maybe I don't understand, but not a BUG is not a BUG. Making an elimination to create a BUG is not valid.

Best wishes,

Keith
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Tue Feb 21, 2012 6:36 am    Post subject: Reply with quote

JC Van Hay wrote:
#1. M Wing : (8=3)r9c3-3r8c1=(3-8)r3c1=8r6c1 => -8r5c3; 15 Singles
#2. ALS-XY Wing : (982)r39c2-(2374)r249c6-(49)r2c7 => -9r2c12.r3c7; stte
or
#2. 5-SIS AIC : 5r2c3=(5-7)r2c8=7r2c6-(7=3)r4c6-3r9c6=3r9c3-(3=1)r8c3 => -1r2c3; stte

JC, to which grid does your M-wing apply? In my grid, posted in the last message, I see no hope of a wing.

Keith
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Tue Feb 21, 2012 8:05 am    Post subject: Reply with quote

keith wrote:
JC Van Hay wrote:
#1. M Wing : (8=3)r9c3-3r8c1=(3-8)r3c1=8r6c1 => -8r5c3; 15 Singles
#2. ALS-XY Wing : (982)r39c2-(2374)r249c6-(49)r2c7 => -9r2c12.r3c7; stte
or
#2. 5-SIS AIC : 5r2c3=(5-7)r2c8=7r2c6-(7=3)r4c6-3r9c6=3r9c3-(3=1)r8c3 => -1r2c3; stte

JC, to which grid does your M-wing apply? In my grid, posted in the last message, I see no hope of a wing.

Keith
Here is a copy of my notes containing the corresponding grids.
Code:
#1. M Wing :

+-------------------+-------------+----------------+
| 4      6     7    | 9   5   1   | 38    38    2  |
| 29     129   159  | 3   8   47  | 4579  457   6  |
| 9(38)  89    3589 | 2   47  6   | 4579  457   1  |
+-------------------+-------------+----------------+
| 1      4     6    | 58  37  37  | 2     9     58 |
| 7      5     9-8  | 6   24  249 | 48    1     3  |
| 9(8)   3     2    | 58  1   49  | 6     458   7  |
+-------------------+-------------+----------------+
| 6      279   4    | 1   23  8   | 357   2357  59 |
| 29(3)  1279  139  | 4   6   5   | 378   2378  89 |
| 5      28    (38) | 7   9   23  | 1     6     4  |
+-------------------+-------------+----------------+

(8=3)r9c3-3r8c1=(3-8)r3c1=8r6c1 => -8r5c3; 15 Singles

#2. 5-SIS AIC :

+-----------------+-------------+-------------+
| 4    6    7     | 9  5   1    | 3   8     2 |
| 29   129  -1(5) | 3  8   4(7) | 49  (57)  6 |
| 39   89   358   | 2  47  6    | 49  57    1 |
+-----------------+-------------+-------------+
| 1    4    6     | 8  37  (37) | 2   9     5 |
| 7    5    9     | 6  24  24   | 8   1     3 |
| 8    3    2     | 5  1   9    | 6   4     7 |
+-----------------+-------------+-------------+
| 6    7    4     | 1  23  8    | 5   23    9 |
| 239  129  (13)  | 4  6   5    | 7   23    8 |
| 5    28   8(3)  | 7  9   2(3) | 1   6     4 |
+-----------------+-------------+-------------+

5r2c3=(5-7)r2c8=7r2c6-(7=3)r4c6-3r9c6=3r9c3-(3=1)r8c3 => -1r2c3; stte

or

#2. 6-SIS ALS-XY Wing :

+----------------+-------------+-------------+
| 4    6     7   | 9  5   1    | 3     8   2 |
| 2-9  12-9  15  | 3  8   (47) | (49)  57  6 |
| 39   (89)  358 | 2  47  6    | 4-9   57  1 |
+----------------+-------------+-------------+
| 1    4     6   | 8  37  (37) | 2     9   5 |
| 7    5     9   | 6  24  24   | 8     1   3 |
| 8    3     2   | 5  1   9    | 6     4   7 |
+----------------+-------------+-------------+
| 6    7     4   | 1  23  8    | 5     23  9 |
| 239  129   13  | 4  6   5    | 7     23  8 |
| 5    (28)  38  | 7  9   (23) | 1     6   4 |
+----------------+-------------+-------------+

(982)r39c2-(2374)r249c6-(49)r2c7 => -9r2c12.r3c7; stte


BTW, Danny's logic is correct : no BUG+2 doesn't prevent the use of a BUG in a line of reasoning as Danny did.

Best regards, JC.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Tue Feb 21, 2012 9:03 am    Post subject: Reply with quote

keith wrote:
There are two reasons I posted this:

1. This is not a BUG+n.

I don't consider it a BUG+n. That's why I didn't present it as such. However, I would be surprised if RonK doesn't have an advanced definition of BUG+n in which it would qualify.

you wrote:
2. The chains are quite long, and I see no hint of a pattern to give me a clue. (I have yet to look at JC's M-wing.)

I'm not sure how/why you are using chains. After assigning r3c1=3 and r8c1=9, I used Simple Sudoku to examine the candidates for each value -- except <6>. For every value, the candidates appeared twice in every row/column/box that they occupied. To me, this is a fundamental property of a BUG.

you wrote:
Danny, I do not think your logic is correct. Maybe I don't understand, but not a BUG is not a BUG. Making an elimination to create a BUG is not valid.

I disagree. The whole concept of a BUG+n is based on the assumption of one or more eliminations. Consider this BUG+1.

Code:
 +-----------------------+
 | 2 . . | . . . | . . 9 |
 | . . 8 | . . . | 7 . . |
 | . 1 . | 6 8 7 | . 2 . |
 |-------+-------+-------|
 | . . . | 5 . . | 8 . . |
 | . . 7 | . 1 . | 9 . . |
 | . . 5 | . . 4 | . . . |
 |-------+-------+-------|
 | . 4 . | 8 2 5 | . 9 . |
 | . . 6 | . . . | 4 . . |
 | 9 . . | . . . | . . 7 |
 +-----------------------+

 *--------------------------------------------------*
 | 2    7    4    | 13   5    13   | 6    8    9    |
 | 6    5    8    | 49   49   2    | 7    3    1    |
 | 3    1    9    | 6    8    7    | 5    2    4    |
 |----------------+----------------+----------------|
 | 1    69   2    | 5    7    69   | 8    4    3    |
 | 4    3    7    | 2    1    8    | 9    6    5    |
 | 8    69   5    | 39   36+9 4    | 1    7    2    |
 |----------------+----------------+----------------|
 | 7    4    1    | 8    2    5    | 3    9    6    |
 | 5    2    6    | 7    39   39   | 4    1    8    |
 | 9    8    3    | 14   46   16   | 2    5    7    |
 *--------------------------------------------------*

         BUG+1                           =  9    r6c5

The logic goes: If <9> is eliminated from r6c5, then a BUG results. So, r6c5=9 must follow.


What makes my solution different is that I use two assignments to create a BUG. Since those assignments can't be valid, the complementary assignments must be valid.


An alternate way of viewing my logic:

Code:
r3c3<>3  r3c1=3  r8c1=9  r8c2<>9;  BUG  =>  r3c3=3
-or-
r8c2<>9  r8c1=9  r3c1=3  r3c3<>3;  BUG  =>  r8c2=9

Regards, Danny
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Tue Feb 21, 2012 6:05 pm    Post subject: Reply with quote

Quote:
1. This is not a BUG+n.
2. The chains are quite long, and I see no hint of a pattern to give me a clue. (I have yet to look at JC's M-wing.)

Danny, I do not think your logic is correct. Maybe I don't understand, but not a BUG is not a BUG. Making an elimination to create a BUG is not valid.

Keith, I don't understand your reasoning. Agree it's not a BUG+, but what's not valid? He's ruling out something that leads to an invalidity (the BUG). An argument can be made that there's a trial-and-error element, but what's not correct or not valid?
Back to top
View user's profile Send private message
Clement



Joined: 24 Apr 2006
Posts: 1111
Location: Dar es Salaam Tanzania

PostPosted: Tue Feb 21, 2012 6:46 pm    Post subject: Vanhegan 12 Jul 2011 Fiendish2.2.1.1 Reply with quote

I agree with keith that ''making an elimination to create a BUG is not valid''. In BUG+2 the extra candidates in the two 3 candidate cells do not necessarily have to be solutions in both cells. In this puzzle it is just a coincidence that they are solutions to both cells. What you have to do is to consider the consequences of the extra candidates being solutions in those cells to other cells.
Back to top
View user's profile Send private message AIM Address
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Tue Feb 21, 2012 9:27 pm    Post subject: Re: Vanhegan 12 Jul 2011 Fiendish2.2.1.1 Reply with quote

Clement wrote:
I agree with keith that ''making an elimination to create a BUG is not valid''. In BUG+2 the extra candidates in the two 3 candidate cells do not necessarily have to be solutions in both cells. In this puzzle it is just a coincidence that they are solutions to both cells. What you have to do is to consider the consequences of the extra candidates being solutions in those cells to other cells.

A good example of the conflict between truth (logic) and rules (form).
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Wed Feb 22, 2012 2:03 am    Post subject: Reply with quote

Danny's result and logic are correct, but I think the logic is a little fortuitous.

I've looked long and hard at this, and I cannot find the reverse argument: What are all the conditions to prevent a BUG?

Keith
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Wed Feb 22, 2012 2:37 am    Post subject: Reply with quote

daj95376 wrote:
The logic goes: If <9> is eliminated from r6c5, then a BUG results. So, r6c5=9 must follow.

Truth cannot be fortuitous. It must be true or it is false.

If r6c5 is a not a 9 then the puzzle has multiple answers (no ifs ands or buts). If this is true then r6c5 must be a 9 to have a valid puzzle.

or ami I confused?
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Wed Feb 22, 2012 4:11 am    Post subject: Reply with quote

arkietech wrote:
daj95376 wrote:
The logic goes: If <9> is eliminated from r6c5, then a BUG results. So, r6c5=9 must follow.

Truth cannot be fortuitous. It must be true or it is false.

If r6c5 is a not a 9 then the puzzle has multiple answers (no ifs ands or buts). If this is true then r6c5 must be a 9 to have a valid puzzle.

or ami I confused?

"Fortuitous" means fortunate. It does not mean correct or incorrect, nor right or wrong.

Sure, R3C1=3 forces a BUG. That is very cool but, I think that is a lucky (fortuitous) observation.

I cannot for the life of me see how not a BUG forces R3C1=9.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Wed Feb 22, 2012 4:47 am    Post subject: Reply with quote

Quote:
Sure, R3C1=3 forces a BUG. That is very cool but, I think that is a lucky (fortuitous) observation.

Are we into a semantical game here? Why wasn't it a skilled observation?
Quote:
I cannot for the life of me see how not a BUG forces R3C1=9.

What is the significance of that, given that it was discovered that r3c1=3 forces a BUG?
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Wed Feb 22, 2012 5:11 am    Post subject: Reply with quote

Marty R. wrote:
Are we into a semantical game here? Why wasn't it a skilled observation?

Because it's my opinion, and I don't see a method for making that observation.

Marty R. wrote:
Quote:
I cannot for the life of me see how not a BUG forces R3C1=9.

What is the significance of that, given that it was discovered that r3c1=3 forces a BUG?


Because I am looking for a method.

Keith
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Wed Feb 22, 2012 6:10 am    Post subject: Reply with quote

keith wrote:
Because I am looking for a method.

Fortuitous is in the eyes of the beholder. Here's how I became fortuitous!

I was looking for a BUG+2 scenario because there were only two unsolved cells with more than two candidates. So, I started examining the candidates in r3c3 and r8c2 to see if I could find the proper conditions for a BUG+2.

What I discovered was that the <3> in r3c3 occurred three times in [c3] -- which was good -- but only twice in [r3] and [b1] -- which was bad because temporarily performing r3c3<>3 would leave a Hidden Single in the form of r3c1=3.

Similarly, I discovered that the <9> in r8c2 occurred three times in [c2] -- which was good -- but only twice in [r8] and [b7] -- which was bad because temporarily performing r8c2<>9 would leave a Hidden Single in the form of r8c1=9.

Here's where the fortuitous part of the story enters. While I was licking my wounds over the "bad" part of of the conditions above, I noticed that the only unsolved cells in [c1] were the <39> pair. Then's when it hit me that the combination of assignments, r3c1=3 and r8c1=9, might force a BUG to occur. So, I tried it and discovered that my hunch was correct.

Of course, trying to explain it took on a whole life of its own. _ Sad _

If a puzzle has a single/unique solution, then a BUG is just another pattern that can't exist. I discount speculation that it would lead to multiple solutions because there is only one solution present ... MAX. Instead, it will always lead to zero solutions being found.

Regards, Danny
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Wed Feb 22, 2012 6:34 am    Post subject: Reply with quote

OK Danny,

So how do we solve these BUGgers?

End games that are dominated by bivalue cells but which are not BUG+n patterns are, I think, rare.

Do you have other examples? Maybe there is an Almost-BUG method to be found.

In the current puzzle, I was totally frustrated in trying to take the "could be a BUG" idea to any conclusion.

I hope you understand I am not criticizing your astute observation that Cell Value => BUG.

I am looking for possible situations where BUG => Cell Value.

Keith
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Wed Feb 22, 2012 6:55 am    Post subject: Reply with quote

keith wrote:
OK Danny,

So how do we solve these BUGgers?

End games that are dominated by bivalue cells but which are not BUG+n patterns are, I think, rare.

Do you have other examples? Maybe there is an Almost-BUG method to be found.

In the current puzzle, I was totally frustrated in trying to take the "could be a BUG" idea to any conclusion.

I hope you understand I am not criticizing your astute observation that Cell Value => BUG.

I am looking for possible situations where BUG => Cell Value.

I don't (currently) have any other examples, but I do know that they may not be as rare as you might expect. Back when I was writing my first Sudoku solver, I forgot to include the test for Hidden Singles in my BUG+1 routine. I encountered several puzzles where the "solution" from my solver was garbage after the BUG+1 routine!

Bottom Line: All of the patterns like UR, BUG, MUG, and such are never suppose to occur in the solution for a puzzle with a single/unique solution. If you can create a scenario where any of these patterns occur, then you've done something wrong. To me, knowing that I could have done something wrong is just as helpful as knowing what's right. _ Laughing _
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Wed Feb 22, 2012 1:44 pm    Post subject: Reply with quote

great exhange! I am fortuitous to have followed it. Very Happy

and that is the truth.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group