dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

A Vanhegan vh

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Mar 10, 2012 9:11 pm    Post subject: A Vanhegan vh Reply with quote

Code:
Puzzle: VH4-1044182vh2.1.1.1
+-------+-------+-------+
| . . 9 | 1 . . | 5 7 . |
| . . . | . . 2 | . . 3 |
| . . . | . . 5 | 6 4 . |
+-------+-------+-------+
| . . . | 5 8 . | . 3 . |
| 1 3 . | 6 . 4 | . 5 8 |
| . 5 . | . 2 9 | . . . |
+-------+-------+-------+
| . 1 6 | 8 . . | . . . |
| 4 . . | 2 . . | . . . |
| . 8 5 | . . 3 | 4 . . |
+-------+-------+-------+
Keith
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Sat Mar 10, 2012 9:47 pm    Post subject: Reply with quote

Code:
 *-----------------------------------------------------------*
 | 36    4     9     | 1     36    8     | 5     7     2     |
 | 5    *67    17    | 4    *69    2     | 18    18-9  3     |
 | 38    2     18    | 7     3-9   5     | 6     4    x19    |
 |-------------------+-------------------+-------------------|
 | 679   679   47    | 5     8     1     | 2     3     467   |
 | 1     3     2     | 6     7     4     | 9     5     8     |
 | 678   5     478   | 3     2     9     | 17    16    1467  |
 |-------------------+-------------------+-------------------|
 | 29    1     6     | 8     4     7     | 3     29    5     |
 | 4    *79    3     | 2     5     6     | 178   189  x179   |
 | 27    8     5     | 9     1     3     | 4     26    67    |
 *-----------------------------------------------------------*
xy-wing extended
(9=6)r2c5-(6=7)r2c2-(7=9)r8c2-(9)r8c9=(9)r3c9 => r2c8,r3c5<>9

Later a bug+1 finishes it.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Mar 10, 2012 10:59 pm    Post subject: Reply with quote

After basics:
Code:
+----------------+----------------+----------------+
| 36   4    9    | 1    36   8    | 5    7    2    |
| 5   b67   17   | 4   a69   2    | 18  18-9  3    |
| 38   2    18   | 7    39   5    | 6    4    19   |
+----------------+----------------+----------------+
| 679 c679  47   | 5    8    1    | 2    3    467  |
| 1    3    2    | 6    7    4    | 9    5    8    |
| 678  5    478  | 3    2    9    | 17   16   1467 |
+----------------+----------------+----------------+
|e29   1    6    | 8    4    7    | 3   f29   5    |
| 4   d79   3    | 2    5    6    | 178  189  179  |
| 27   8    5    | 9    1    3    | 4    26   67   |
+----------------+----------------+----------------+
The 18 UR makes a 27 pseudo-cell in B9, which takes out 7 in R8C9, but that didn't take me very far.

M-wing: 6 in a forces 6 in c. ad are pincers on 9. With transport def, R2C8 <>9. That leads to a BUG+1, which can also be solved by an XY-wing or a skyscraper on 7.

Keith
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Sun Mar 11, 2012 4:24 pm    Post subject: Reply with quote

Playing with a network solution from my solver lead to:

Code:
 If r6c1=67 then ...

 (6=7)r6c1 - (7=2)r9c1 - (2=6)r9c8  =>  r6c8<>6

 <47> UR r46c39 ...

 (6)r46c9                                         - (6)r6c8
 (1)r 6c9  - r3c9 = (1-8)r3c3 = r3c1 - (8=67)r6c1 - (6)r6c8
 (8)r 6c3                            - (8=67)r6c1 - (6)r6c8
 +--------------------------------------------------------------+
 |  36    4     9     |  1     36    8     |  5     7     2     |
 |  5     67    17    |  4     69    2     |  18    189   3     |
 |  38    2     18    |  7     39    5     |  6     4     19    |
 |--------------------+--------------------+--------------------|
 |  679   679  *47    |  5     8     1     |  2     3     47+6  |
 |  1     3     2     |  6     7     4     |  9     5     8     |
 |  678   5    *47+8  |  3     2     9     |  17    1-6   47+16 |
 |--------------------+--------------------+--------------------|
 |  29    1     6     |  8     4     7     |  3     29    5     |
 |  4     79    3     |  2     5     6     |  178   189   179   |
 |  27    8     5     |  9     1     3     |  4     26    67    |
 +--------------------------------------------------------------+
 # 40 eliminations remain
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Mon Mar 12, 2012 4:35 am    Post subject: Reply with quote

Danny,

I noticed that, but thought it was kind of obvious ...

NOT!

Nice find! My kind of move.

Keith
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Mar 12, 2012 6:01 am    Post subject: Reply with quote

keith wrote:
I noticed that, but thought it was kind of obvious ...

NOT!

Nice find! My kind of move.

Keith, Thanks!

I had a difficult time taking the (simple) network contradiction found by my solver and unwinding it into something interesting.

Code:
solver:  6r6c8  2r9c8  7r9c1  8r6c1  8r3c3  1r3c9  [r46c39]=UR47

I was able to unwind the logic to r6c1, but it took awhile to realize that I could treat the logic from there as a separate entity. Once I'd prepared the final results, I had to share it.

Regards, Danny
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group