View previous topic :: View next topic |
Author |
Message |
SudoQ
Joined: 02 Aug 2011 Posts: 127
|
Posted: Wed Mar 14, 2012 5:19 pm Post subject: HoDoKu puzzle (1) |
|
|
Since there are few puzzles coming in at the moment, I send this one:
86.5...1..9..6..574.....6.....71.....41...78.....86.....6.....558..9..7..1...3.92
The conditions are as follows:
The puzzle is created with the program HoDoKu, level 'Hard'.
HoDoKu's own solver uses 7 steps.
There is a relatively short network solution (5 nodes).
Presumably there are also nice logical pattern solutions...
After basics:
Code: | |------------|---------------|----------------|
| 8 6 7 | 5 234 24 | 2349 1 349 |
| 1 9 23 | 234 6 8 | 234 5 7 |
| 4 23 5 | 19 7 19 | 6 23 8 |
|------------|---------------|----------------|
| 23 5 8 | 7 1 49 | 2349 6 349 |
| 6 4 1 | 239 23 5 | 7 8 39 |
| 23 7 9 | 34 8 6 | 5 234 1 |
|------------|---------------|----------------|
| 9 23 6 | 8 24 7 | 1 34 5 |
| 5 8 23 | 124 9 124 | 34 7 6 |
| 7 1 4 | 6 5 3 | 8 9 2 |
|------------|---------------|----------------| |
/SudoQ |
|
Back to top |
|
|
JC Van Hay
Joined: 13 Jun 2010 Posts: 494 Location: Charleroi, Belgium
|
Posted: Wed Mar 14, 2012 6:48 pm Post subject: |
|
|
M Wing : (3=4)r7c8-4r7c5=(4-3)r1c5=3r1c79 => -3r3c8; stte |
|
Back to top |
|
|
Marty R.
Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
|
Posted: Wed Mar 14, 2012 7:01 pm Post subject: |
|
|
Nice move JC. I needed four moves.
X-Wing r26; r6c8<>3
Skyscraper r26; r4c7<>4
XYZ-Wing (349) b6; r4c7<>9
XY-Wing (243), pivot r6c8, flightless with transport; r2c4<>3 |
|
Back to top |
|
|
SudoQ
Joined: 02 Aug 2011 Posts: 127
|
Posted: Wed Mar 14, 2012 9:50 pm Post subject: |
|
|
Marty R. wrote: | I needed four moves. |
Yet, you beat the automatic solvers.
The program XSUDO uses twice as many steps!
Two String Kite,Grouped. r1c7<>4
Turbot Fish. r4c7<>4
Turbot Fish. r8c4<>4
Turbot Fish. r1c6<>4
X-Wing, Rows r37/c28. r6c8<>3
ALS-XZ Rule. r4c9<>3
Turbot Fish. r1c7<>3
XY-Wing. r4c9<>4
/SudoQ |
|
Back to top |
|
|
SudoQ
Joined: 02 Aug 2011 Posts: 127
|
Posted: Wed Mar 14, 2012 10:30 pm Post subject: |
|
|
If you like tri cell solutions..
you can show that r2c4<>3 if r2c7=2,3 or 4 (via r8).
/SudoQ |
|
Back to top |
|
|
arkietech
Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
|
Posted: Wed Mar 14, 2012 11:19 pm Post subject: |
|
|
Code: |
*-----------------------------------------------------------*
| 8 6 7 | 5 234 24 | 2349 1 349 |
| 1 9 a23 |e24-3 6 8 |d234 5 7 |
| 4 23 5 | 19 7 19 | 6 23 8 |
|-------------------+-------------------+-------------------|
| 23 5 8 | 7 1 49 | 2349 6 349 |
| 6 4 1 | 239 23 5 | 7 8 39 |
| 23 7 9 | 34 8 6 | 5 234 1 |
|-------------------+-------------------+-------------------|
| 9 23 6 | 8 24 7 | 1 34 5 |
| 5 8 b23 | 124 9 124 |c34 7 6 |
| 7 1 4 | 6 5 3 | 8 9 2 |
*-----------------------------------------------------------*
s-wing
(3)r2c3=r8c3-(3=4)r8c7-r2c7=(4)r2c4 => r2c4<>3 |
|
|
Back to top |
|
|
|