dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

au tough 4/10/12

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Tue Apr 10, 2012 6:02 am    Post subject: au tough 4/10/12 Reply with quote

Code:

 *-----------*
 |9..|7..|...|
 |...|.42|5.6|
 |...|..1|87.|
 |---+---+---|
 |...|...|15.|
 |...|.3.|...|
 |.56|...|...|
 |---+---+---|
 |.21|8..|...|
 |3.9|52.|...|
 |...|..7|..4|
 *-----------*

Play/print online
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Tue Apr 10, 2012 6:36 pm    Post subject: Reply with quote

I threw in the towel. There's one Finned X-Wing on 7 that looks worthless. Embarassed

Code:

+-------------------+----------------+-------------------+
| 9     136   235   | 7    568  368  | 234   1234  123   |
| 178   1378  378   | 39   4    2    | 5     139   6     |
| 2456  346   2345  | 369  569  1    | 8     7     239   |
+-------------------+----------------+-------------------+
| 2478  34789 23478 | 2469 6789 689  | 1     5     2789  |
| 12478 14789 2478  | 1249 3    5    | 24679 24689 2789  |
| 12478 5     6     | 1249 1789 89   | 23479 23489 23789 |
+-------------------+----------------+-------------------+
| 47    2     1     | 8    69   3469 | 3679  369   5     |
| 3     47    9     | 5    2    46   | 67    18    18    |
| 568   68    58    | 139  19   7    | 239   239   4     |
+-------------------+----------------+-------------------+

Play this puzzle online at the Daily Sudoku site
Back to top
View user's profile Send private message
SudoQ



Joined: 02 Aug 2011
Posts: 127

PostPosted: Tue Apr 10, 2012 7:02 pm    Post subject: Reply with quote

I tested this puzzle in a public solution program, and it found a 'Sue de Coq':
Code:
r1c23 - {12356} (r1c789 - {1234}, r3c1 - {56}) => r3c2<>6, r3c3<>5, r1c6<>3

At some point I'll try to understand how such a thing works!

/SudoQ
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Tue Apr 10, 2012 7:20 pm    Post subject: Reply with quote

Code:
 *--------------------------------------------------------------------*
 | 9      136    235    | 7      568    368    | 234    1234   123    |
 | 178    1378   378    |a39     4      2      | 5      139    6      |
 |b56     346    2345   |b369   b569    1      | 8      7      239    |
 |----------------------+----------------------+----------------------|
 | 2478   34789  3478   | 2469   6789   689    | 1      5      2789   |
 | 12478  14789  478    | 1249   3      5      | 2469   24689  2789   |
 | 12478  5      6      | 1249   1789   89     | 2349   23489  23789  |
 |----------------------+----------------------+----------------------|
 | 47     2      1      | 8      69     3469   | 3679   369    5      |
 | 3      47     9      | 5      2      46     | 67     18     18     |
 | 56     68     58     | 1-39   19     7      | 239    239    4      |
 *--------------------------------------------------------------------*
np[(3=9)r2c4-anp(9=356)r3c145] => r9c4<>39
stte

I hope I'm showing this correctly.
if r2c4=9 r3c15 become a 56 pair making r3c4=3
this makes r23c4 a Pseudo 39 pair and therefore r9c4<>39

oops Embarassed what if it is a 3!
back to the drawing board...it look so good this morning.
r9c4 <> 3 only but that is all that is needed,
(3=9)r2c4-anp(9=356)r3c145 => r9c4<>3

Play/print online
Back to top
View user's profile Send private message
Luke451



Joined: 20 Apr 2008
Posts: 310
Location: Southern Northern California

PostPosted: Tue Apr 10, 2012 7:49 pm    Post subject: Reply with quote

arkietech wrote:
Code:
 *--------------------------------------------------------------------*
 | 9      136    235    | 7      568    368    | 234    1234   123    |
 | 178    1378   378    |a39     4      2      | 5      139    6      |
 |b56     346    2345   |b369   b569    1      | 8      7      239    |
 |----------------------+----------------------+----------------------|
 | 2478   34789  3478   | 2469   6789   689    | 1      5      2789   |
 | 12478  14789  478    | 1249   3      5      | 2469   24689  2789   |
 | 12478  5      6      | 1249   1789   89     | 2349   23489  23789  |
 |----------------------+----------------------+----------------------|
 | 47     2      1      | 8      69     3469   | 3679   369    5      |
 | 3      47     9      | 5      2      46     | 67     18     18     |
 | 56     68     58     | 1-39   19     7      | 239    239    4      |
 *--------------------------------------------------------------------*
np[(3=9)r2c4-anp(9=356)r3c145] => r9c4<>39
stte

I hope I'm showing this correctly.
if r2c4=9 r3c15 become a 56 pair making r3c4=3
this makes r23c4 a Pseudo 39 pair and therefore r9c4<>39

oops Embarassed what if it is a 3!
back to the drawing board...it look so good this morning.
r9c4 <> 3 only but that is all that is needed,
(3=9)r2c4-anp(9=356)r3c145 => r9c4<>3

Play/print online


Nice spot! That's an ALS-xz, by the way.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Tue Apr 10, 2012 10:01 pm    Post subject: Reply with quote

arkietech wrote:
Code:
 *--------------------------------------------------------------------*
 | 9      136    235    | 7      568    368    | 234    1234   123    |
 | 178    1378   378    |a39     4      2      | 5      139    6      |
 |b56     346    2345   |b369   b569    1      | 8      7      239    |
 |----------------------+----------------------+----------------------|
 | 2478   34789  3478   | 2469   6789   689    | 1      5      2789   |
 | 12478  14789  478    | 1249   3      5      | 2469   24689  2789   |
 | 12478  5      6      | 1249   1789   89     | 2349   23489  23789  |
 |----------------------+----------------------+----------------------|
 | 47     2      1      | 8      69     3469   | 3679   369    5      |
 | 3      47     9      | 5      2      46     | 67     18     18     |
 | 56     68     58     | 1-39   19     7      | 239    239    4      |
 *--------------------------------------------------------------------*
np[(3=9)r2c4-anp(9=356)r3c145] => r9c4<>39
stte

I hope I'm showing this correctly.
if r2c4=9 r3c15 become a 56 pair making r3c4=3
this makes r23c4 a Pseudo 39 pair and therefore r9c4<>39

I don't think the r9c4<>39 is correct. My solver reports:

Code:
(3=9)r2c4 - (9=ALS=3)r3c45 - loop  =>  r1c6<>3

But it has a bug and missed r9c4<>3 as well. It also doesn't list the ALS connecting cell -- r3c1 -- in its most compact output format.

I also have a problem with ALS loops and the "passive digits" -- <56> -- performing eliminations. I nearly fell out of my chair the first time I saw Luke use them in one of his solutions. _ Laughing _

A more accurate representation:

Code:
(3=9)r2c4 - (956=ALS=563)r3c145 - loop  =>  r1c6,r9c4<>3, r3c3<>5, r3c2<>6


Regards, Danny
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Wed Apr 11, 2012 1:42 am    Post subject: Reply with quote

Luke451 wrote:

Nice spot! That's an ALS-xz, by the way.


Here is what I see:
Code:
 *--------------------------------------------------------------------*
 | 9      136    235    | 7      568    368    | 234    1234   123    |
 | 178    1378   378    |a39     4      2      | 5      139    6      |
 |b56     346    2345   |b369   b569    1      | 8      7      239    |
 |----------------------+----------------------+----------------------|
 | 2478   34789  3478   | 2469   6789   689    | 1      5      2789   |
 | 12478  14789  478    | 1249   3      5      | 2469   24689  2789   |
 | 12478  5      6      | 1249   1789   89     | 2349   23489  23789  |
 |----------------------+----------------------+----------------------|
 | 47     2      1      | 8      69     3469   | 3679   369    5      |
 | 3      47     9      | 5      2      46     | 67     18     18     |
 | 56     68     58     | 19-3   19     7      | 239    239    4      |
 *--------------------------------------------------------------------*
 (3=9)r2c4-(9=3np[56])r3c145 => r9c4<>3

I don't see the ALS-xz Confused
Back to top
View user's profile Send private message
Luke451



Joined: 20 Apr 2008
Posts: 310
Location: Southern Northern California

PostPosted: Wed Apr 11, 2012 4:08 pm    Post subject: Reply with quote

arkietech wrote:
Luke451 wrote:

Nice spot! That's an ALS-xz, by the way.


Here is what I see:
Code:
 *--------------------------------------------------------------------*
 | 9      136    235    | 7      568    368    | 234    1234   123    |
 | 178    1378   378    |a39     4      2      | 5      139    6      |
 |b56     346    2345   |b369   b569    1      | 8      7      239    |
 |----------------------+----------------------+----------------------|
 | 2478   34789  3478   | 2469   6789   689    | 1      5      2789   |
 | 12478  14789  478    | 1249   3      5      | 2469   24689  2789   |
 | 12478  5      6      | 1249   1789   89     | 2349   23489  23789  |
 |----------------------+----------------------+----------------------|
 | 47     2      1      | 8      69     3469   | 3679   369    5      |
 | 3      47     9      | 5      2      46     | 67     18     18     |
 | 56     68     58     | 19-3   19     7      | 239    239    4      |
 *--------------------------------------------------------------------*
 (3=9)r2c4-(9=3np[56])r3c145 => r9c4<>3

I don't see the ALS-xz Confused

There are different ways of looking at this, but now I think that it is not only an ALS-xz, but a doubly-linked ALS-xz! Both the 3 and 9 are "restricted common digits." That carries a little more clout that just an ALS-xz as far as the number of eliminations.

I'm rusty on doubly-linked ALS-xz, and I'm away from my notes. Will follow up...

For now, here's one ALS-xz argument:
Code:
*--------------------------------------------------------------------*
 | 9      136    235    | 7      568    368    | 234    1234   123    |
 | 178    1378   378    |a39     4      2      | 5      139    6      |
 |b56     346    2345   |b369   b569    1      | 8      7      239    |
 |----------------------+----------------------+----------------------|
 | 2478   34789  3478   | 2469   6789   689    | 1      5      2789   |
 | 12478  14789  478    | 1249   3      5      | 2469   24689  2789   |
 | 12478  5      6      | 1249   1789   89     | 2349   23489  23789  |
 |----------------------+----------------------+----------------------|
 | 47     2      1      | 8      69     3469   | 3679   369    5      |
 | 3      47     9      | 5      2      46     | 67     18     18     |
 | 56     68     58     | 19-3   19     7      | 239    239    4      |
 *--------------------------------------------------------------------*


A: (39)r2c4
B: (3569)r3c145

x=9 (restricted common)
z=3 (other common)

==>r9c4<>3

In Eureka: (3=9)r2c4-(9=356)als:r3c145 ==>r9c4<>3
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Wed Apr 11, 2012 4:24 pm    Post subject: Reply with quote

Luke451 wrote:
A: (39)r2c4
B: (3569)r3c145

x=9 (restricted common)
z=3 (other common)

==>r9c4<3>r9c4<>3


Thanks Luke451 Very Happy A set in a single cell is what was throwing me.

Looking forward to more on ALS's The Eureka helps.
Back to top
View user's profile Send private message
Luke451



Joined: 20 Apr 2008
Posts: 310
Location: Southern Northern California

PostPosted: Wed Apr 11, 2012 6:58 pm    Post subject: Reply with quote

daj95376 wrote:
Code:
(3=9)r2c4 - (956=ALS=563)r3c145 - loop  =>  r1c6,r9c4<>3, r3c3<>5, r3c2<>6

After seeing this, I'm quite convinced this is indeed a doubly-linked ALS-xz.

As I mentioned above, both the (3) and (9) are "restricted common candidates." This simply means that the (3) cannot be in both sets (39) and (3569) at the same time, and the (9) cannot be in both sets at the same time.

"Extra digits" are those candidates in both sets that are not RCCs (restricted common candidates.)

There are no extra digits in the (39) set, but the (3569) set has the extra digits (56).

Code:
 *--------------------------------------------------------------------*
 | 9      136    235    | 7      568    368    | 234    1234   123    |
 | 178    1378   378    |a39     4      2      | 5      139    6      |
 |b56     346    2345   |b369   b569    1      | 8      7      239    |
 |----------------------+----------------------+----------------------|
 | 2478   34789  3478   | 2469   6789   689    | 1      5      2789   |
 | 12478  14789  478    | 1249   3      5      | 2469   24689  2789   |
 | 12478  5      6      | 1249   1789   89     | 2349   23489  23789  |
 |----------------------+----------------------+----------------------|
 | 47     2      1      | 8      69     3469   | 3679   369    5      |
 | 3      47     9      | 5      2      46     | 67     18     18     |
 | 56     68     58     | 19-3   19     7      | 239    239    4      |
 *--------------------------------------------------------------------*

The eliminations are any outside digits that can see all the candidates of either RCC, and all the outside candidates that can see all of the extra digits:

* (3)r9c4 and (3)r1c6 both see both the RCC (3) and are out.
* (6)r3c2 and (5)r3c3 both see all of the extra digits (56) and are out.

Those are the same eliminations as the loop your solver found, Danny. They also show how doubly-linked turns "passive digits" into passive aggressive.

I would say the doubly-linked ALS-xz has the slight advantage over the loop in that utilizing it does not require any chain whatsover. Pattern solvers can immediately make the elims as soon as the pattern is recognized. Instant gratification Exclamation

(Edit: corrected terminology, RCC is correct, not RCD)


Last edited by Luke451 on Fri Apr 13, 2012 8:29 pm; edited 1 time in total
Back to top
View user's profile Send private message
Luke451



Joined: 20 Apr 2008
Posts: 310
Location: Southern Northern California

PostPosted: Fri Apr 13, 2012 5:38 pm    Post subject: Reply with quote

SudoQ wrote:
I tested this puzzle in a public solution program, and it found a 'Sue de Coq':
Code:
r1c23 - {12356} (r1c789 - {1234}, r3c1 - {56}) => r3c2<>6, r3c3<>5, r1c6<>3

At some point I'll try to understand how such a thing works!

How about the doubly-linked ALS-xz perspective, as long the topic came up?

Your Sue de Coq is a complement of the doubly-linked ALS-xz pointed out above.
Code:
 *--------------------------------------------------------------------*
 | 9     *136   *235    | 7      568   -368    |*234   *1234  *123    |
 | 178    1378   378    | 39     4      2      | 5      139    6      |
 |#56     34-6   234-5  | 369    569    1      | 8      7      239    |
 |----------------------+----------------------+----------------------|
 | 2478   34789  3478   | 2469   6789   689    | 1      5      2789   |
 | 12478  14789  478    | 1249   3      5      | 2469   24689  2789   |
 | 12478  5      6      | 1249   1789   89     | 2349   23489  23789  |
 |----------------------+----------------------+----------------------|
 | 47     2      1      | 8      69     3469   | 3679   369    5      |
 | 3      47     9      | 5      2      46     | 67     18     18     |
 | 56     68     58     | 139    19     7      | 239    239    4      |
 *--------------------------------------------------------------------*

* In row 1 there is an almost locked set (6 digits in 5 cells), (123456)r1c23789
# In r3c1 there is a second ALS (2 digits in 1 cell), (56)r3c1

The two ALSs have two candidates that cannot be in both sets, (5) and (6) (restricted common candidates.)

(5)r3c3 sees both the RCC(5) and can be eliminated.
(6)r3c2 sees both the RCC(6) and can be eliminated.
(3)r1c6 sees every (3) in the first ALS and can be eliminated.

The eliminations are possible because if any digit of an ALS is removed, the set becomes locked.
With the two sets doubly-linked, this would result in too few candidates for the available cells.




Some basics:

A "locked set" exists when N digits are locked in N cells within a house, such as

1 digit in 1 cell
2 digits in 2 cells
3 digits in 3 cells
4 digits in 4 cells
etc.

An "almost locked set" (ALS) exists when N+1 digits are locked in N cells within a house, such as

2 digits in 1 cell
3 digits in 2 cells
4 digits in 3 cells
5 digits in 4 cells
etc.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group