dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Vanhegan Fiendish 5/4/12

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Fri May 04, 2012 7:13 am    Post subject: Vanhegan Fiendish 5/4/12 Reply with quote

Code:

 *-----------*
 |.41|2..|...|
 |9..|..1|...|
 |.8.|..5|..1|
 |---+---+---|
 |.95|.24|.7.|
 |...|1.7|...|
 |.3.|98.|45.|
 |---+---+---|
 |5..|8..|.4.|
 |...|4..|..5|
 |...|..9|26.|
 *-----------*
 

Play/Print online
Back to top
View user's profile Send private message
aran



Joined: 19 Apr 2010
Posts: 70

PostPosted: Fri May 04, 2012 10:33 am    Post subject: Reply with quote

Vanhegan 4.5.12 after ssts
Code:

 *-----------------------------------------------------------*
 | 67    4     1     | 2     9     8     | 5     3     67    |
 | 9     5     26    | 67    3     1     | 678   28    4     |
 | 237   8     236   | 67    4     5     | 679   29    1     |
 |-------------------+-------------------+-------------------|
 | 68    9     5     | 3     2     4     | 1     7     68    |
 | 248   26    2468  | 1     5     7     | 3689  89    389   |
 | 1     3     7     | 9     8     6     | 4     5     2     |
 |-------------------+-------------------+-------------------|
 | 5     126   2369  | 8     16    23    | 379   4     379   |
 | 23    67    89    | 4     67    23    | 89    1     5     |
 | 348   17    348   | 5     17    9     | 2     6     38    |
 *-----------------------------------------------------------*

In illustratation of notations suggested recently :

8r2c7=AUR67r23c47=9r3c7-(9=8)r8c7 : =><8>r5c7
6r5c7=XYwing(389 : r5c7/r8c7/r9c9)=3r5c7 : =><9>r5c7
sstste
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Fri May 04, 2012 11:39 am    Post subject: Reply with quote

aran wrote:
8r2c7=AUR67r23c47=9r3c7-(9=8)r8c7 : =><8>r5c7
6r5c7=XYwing(389 : r5c7/r8c7/r9c9)=3r5c7 : =><9>r5c7
sstste

We both had our eyes on r5c7
Code:

 *--------------------------------------------------------------------*
 | 67     4      1      | 2      9      8      | 5      3      67     |
 | 9      5      26     | 67     3      1      | 678    28     4      |
 | 2367   8      236    | 67     4      5      | 679    29     1      |
 |----------------------+----------------------+----------------------|
 | 68     9      5      | 3      2      4      | 1      7     a68     |
 | 2468   26     2468   | 1      5      7      |d389-6  89    c3689   |
 | 1      3      7      | 9      8      6      | 4      5      2      |
 |----------------------+----------------------+----------------------|
 | 5      1267   2369   | 8      167    23     | 379    4      379    |
 | 2368   267    23689  | 4      67     23     | 3789   1      5      |
 | 348    17     348    | 5      17     9      | 2      6     b38     |
 *--------------------------------------------------------------------*

(6=8)r4c9-(8=3)r9c9-r5c9=(3)r5c7 => r5c7<>6; lcls

I like your notation. I'm still studying it. Mine is a wing ( I believe) does it have a name?
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Fri May 04, 2012 11:59 am    Post subject: Reply with quote

Code after basics:
Code:
*--------------------------------------------------------------------*
 | 67     4      1      | 2      9      8      | 5      3      67     |
 | 9      5      26     | 67     3      1      | 678    28     4      |
 | 2367   8      236    | 67     4      5      | 679    29     1      |
 |----------------------+----------------------+----------------------|
 | 68     9      5      | 3      2      4      | 1      7      68     |
 | 2468   26     2468   | 1      5      7      | 3689   89     3689   |
 | 1      3      7      | 9      8      6      | 4      5      2      |
 |----------------------+----------------------+----------------------|
 | 5      1267   2369   | 8      167    23     | 379    4      379    |
 | 2368   267    23689  | 4      67     23     | 3789   1      5      |
 | 348    17     348    | 5      17     9      | 2      6      38     |
 *--------------------------------------------------------------------*



I never got past the AUR(67)

AUR(67)r23c47 SIS (8)r2c7, (9)r3c7 => r1c9=7
(8)r2c7-r2c8=r5c8-(8=6=7)r41c9;
||
(9)r3c7-r78c7=(9-7)r7c9=r1c9;

I also appreciate the notational suggestions and am attempting to realign my thinking to employ them. I have previously posted solutions using the following technique where the SIS are explicitly stated.

(7)r1c9=(7-9)r7c9=r78c7-AUR(67)r23c47[(9)r3c7=(8)r2c7]-r2c8=r5c8-(8=6=7)r41c9 => r1c9=9

[Edited one time to include alternate notation.}

Ted
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Fri May 04, 2012 12:25 pm    Post subject: Reply with quote

aran wrote:

6r5c7=XYwing(389 : r5c7/r8c7/r9c9)=3r5c7 : =><9>r5c7

Aran,

When I first looked at this statement, I did not fully understand it. Initially, the XYwing component caused me to expect to see a deletion, not an assignment statement. After viewing the grid it become obvious that the XYwing deletes the 3 in r5c9 that then forces a 3 in r5c7.

I am still thinking about this missing step in the notation.

Ted
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Fri May 04, 2012 1:16 pm    Post subject: Reply with quote

(6=8)r4c9-(8=3)r9c9-r5c9=(3)r5c7 => r5c7<>6

Is this right?

sis(6)r4c9,(3)r9c9=(3)r5c7 => r5c7<>6
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri May 04, 2012 10:10 pm    Post subject: Reply with quote

Not particularly proud of this, but r1c1=7 proves two 8s in box 6; r1c1<>7.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Fri May 04, 2012 10:41 pm    Post subject: Reply with quote

arkietech wrote:
Mine is a wing ( I believe) does it have a name?

Code:
H3-Wing:  (X=Y)a - (Y=Z)b - (Z)c = (Z)d          "a" and "d" in same unit; a<>Z, d<>X
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Fri May 04, 2012 11:31 pm    Post subject: Reply with quote

daj95376 wrote:
arkietech wrote:
Mine is a wing ( I believe) does it have a name?

Code:
H3-Wing:  (X=Y)a - (Y=Z)b - (Z)c = (Z)d          "a" and "d" in same unit; a<>Z, d<>X


Thanks Danny Very Happy

I have been calling: 3-SIS using bivalue(XY), bilocation(Y), and bilocation(Z) an h=wing

Is that right?
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 398

PostPosted: Sat May 05, 2012 1:12 am    Post subject: Reply with quote

arkietech wrote:
I have been calling: 3-SIS using bivalue(XY), bilocation(Y), and bilocation(Z) an h=wing

Is that right?

I often wonder how, in this case for example, VLL3-wing would have been accepted. IOW sequentially list 'V' and 'L' for each bivalue and bilocal strong link, respectively, and add '2' or '3' depending upon whether two or three candidate values were involved.

Then no need to remember the correct pattern applying to m-, w-, s-, h2-, h3-, L2-, and L3-wings.
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Sat May 05, 2012 1:55 am    Post subject: Reply with quote

ronk wrote:
Then no need to remember the correct pattern applying to m-, w-, s-, h2-, h3-, L2-, and L3-wings.


I like it h2 and L2 are the xy's and h3 and L3 are the xyz's Very Happy
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 398

PostPosted: Sat May 05, 2012 3:20 am    Post subject: Reply with quote

arkietech wrote:
ronk wrote:
Then no need to remember the correct pattern applying to m-, w-, s-, h2-, h3-, L2-, and L3-wings.
I like it h2 and L2 are the xy's and h3 and L3 are the xyz's Very Happy

Unfortunately, IIRC both the h2- and h3-wings are "xyz."
Back to top
View user's profile Send private message
arkietech



Joined: 31 Jul 2008
Posts: 1834
Location: Northwest Arkansas USA

PostPosted: Sat May 05, 2012 5:43 am    Post subject: Reply with quote

ronk wrote:
arkietech wrote:
ronk wrote:
Then no need to remember the correct pattern applying to m-, w-, s-, h2-, h3-, L2-, and L3-wings.
I like it h2 and L2 are the xy's and h3 and L3 are the xyz's Very Happy

Unfortunately, IIRC both the h2- and h3-wings are "xyz."
Sad
Back to top
View user's profile Send private message
pjb



Joined: 05 May 2012
Posts: 1
Location: Sydney

PostPosted: Sat May 05, 2012 6:43 am    Post subject: Reply with quote

Here's a chain-free way of solving it: After basic moves, an X-wing of 6 at r1c19, r4c19 gives r358c1; r5c9 <> 6. A finned X-wing of 8's at r4c19; ; r9c139 gives r8c1 <> 8. This produces a naked pair of 23 in row 8 giving r8c2 <>2, r8c3 <>23 and r8c7 <>3, and a second naked pair of 67 in row 8 giving r8c3 <>6 and r8c7 <> 7. As 7's at r7c79 are only ones in box 9, this gives r7c2 and r7c5 <> 7. After this the state is:

Code:

67     4      1      | 2      9      8      | 5      3      67     
9      5      26     | 67     3      1      | 678    28     4     
237    8      236    | 67     4      5      | 679    29     1     
---------------------+----------------------+---------------------
68     9      5      | 3      2      4      | 1      7      68     
248    26     2468   | 1      5      7      | 3689   89     389   
1      3      7      | 9      8      6      | 4      5      2     
---------------------+----------------------+---------------------
5      126    2369   | 8      16     23     | 379    4      379   
23     67     89     | 4      67     23     | 89     1      5     
348    17     348    | 5      17     9      | 2      6      38     


Now there is a lovely type 1 BUG-Lite at r789c2 and r789c5 giving r7c2 = 2, after which the puzzle solves easily.

pjb
Back to top
View user's profile Send private message Visit poster's website
aran



Joined: 19 Apr 2010
Posts: 70

PostPosted: Sat May 05, 2012 11:35 am    Post subject: Reply with quote

tlanglet wrote:
aran wrote:

6r5c7=XYwing(389 : r5c7/r8c7/r9c9)=3r5c7 : =><9>r5c7

Aran,

When I first looked at this statement, I did not fully understand it. Initially, the XYwing component caused me to expect to see a deletion, not an assignment statement. After viewing the grid it become obvious that the XYwing deletes the 3 in r5c9 that then forces a 3 in r5c7.

I am still thinking about this missing step in the notation.

Ted

tlanglet
The idea is to simplify presentation, and in particular to remove any unnecessary brackets
which btw is one reason why I don't use brackets to surround candidates eg 7r1c9 rather than (7)r1c9 unless required for clarity eg 7r1c9=(7-9)r7c9
but that's not the real subject here
which is : in a chain supposedly of alternating inferences can it make sense to have a sequence of =x= (as opposed to =x-) ?
well for a start there are already non-alternating inferences any time brackets are used to represent possibilities
For example imagine this :
xr4c9=...-yr1c1=(zr9c1=abr19c1-(ab=x)r4c1)
which establishes that if r9c1 is not z, then x can be eliminated from r4c2345678 subject to examination of the alternative possibility : r9c1 is z. If it turned out that zr9c1=>xr5c5, then the overall result would be <x>r4c456

When however the alternative is an illegal or impossible structure such as a UR, there is nothing to be examined.
So the brackets can reasonably be removed, or so I contend.
The interpretation in such a case is then this :
non-alternating inferences =X=, and no brackets =>X is an impossible structure, and what immediately follows is necessary to avoid that illegal structure.

Take now your presentation
(7)r1c9=(7-9)r7c9=r78c7-AUR(67)r23c47[(9)r3c7=(8)r2c7]-r2c8=r5c8-(8=6=7)r41c9 => r1c9=9
This would become :
7r1c9=(7-9)r7c9=r78c7-9r3c7=UR67r23c47=8r2c7-r2c8=r5c8-(8=67)r41c9 => r1c9=7
here X is the impossible structure UR67r23c47, and what follows =8r2c7 is necessary to avoid it.
The A of AUR is also surplus to requirements since it is the UR which is the invalid structure.

On the other chain :
6r5c7=XYwing(389 : r5c7/r8c7/r9c9)=3r5c7 : =><9>r5c7
The illegal structure is the sum of the XY wing and the z-candidate which would produce an empty cell at its heart, and what follows =3r5c7 is necessary to avoid that.
The question is : how succinctly can that be written ? Is it necessary to note the XY wing, and the z-candidate, or sufficient to show XY wing alone ? Certainly the latter is preferable stylistically, and the avoidance mechanism clearly points to what the z-candidate must be. Under this approach then, z remains a silent partner....but then he shouldn't be there in the first place !
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat May 05, 2012 1:03 pm    Post subject: Reply with quote

pjb wrote:
Here's a chain-free way of solving it: After basic moves, an X-wing of 6 at r1c19, r4c19 gives r358c1; r5c9 <> 6. A finned X-wing of 8's at r4c19; ; r9c139 gives r8c1 <> 8. This produces a naked pair of 23 in row 8 giving r8c2 <>2, r8c3 <>23 and r8c7 <>3, and a second naked pair of 67 in row 8 giving r8c3 <>6 and r8c7 <> 7. As 7's at r7c79 are only ones in box 9, this gives r7c2 and r7c5 <> 7. After this the state is:

Code:

67     4      1      | 2      9      8      | 5      3      67     
9      5      26     | 67     3      1      | 678    28     4     
237    8      236    | 67     4      5      | 679    29     1     
---------------------+----------------------+---------------------
68     9      5      | 3      2      4      | 1      7      68     
248    26     2468   | 1      5      7      | 3689   89     389   
1      3      7      | 9      8      6      | 4      5      2     
---------------------+----------------------+---------------------
5      126    2369   | 8      16     23     | 379    4      379   
23     67     89     | 4      67     23     | 89     1      5     
348    17     348    | 5      17     9      | 2      6      38     


Now there is a lovely type 1 BUG-Lite at r789c2 and r789c5 giving r7c2 = 2, after which the puzzle solves easily.

pjb

pjb,

Welcome to the forum!

Inspired by your post, I found:

Type 4 UR 17
X-wing 6
XYZ-wing 3-89

(Although I suppose the point of this thread is the notation, not the puzzle solution.)

Keith
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group