View previous topic :: View next topic |
Author |
Message |
arkietech
Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
|
Posted: Sat Jul 28, 2012 5:51 am Post subject: Assistenten x 16 February 2008 |
|
|
Code: |
*-----------*
|31.|7..|...|
|.5.|...|...|
|...|.6.|.9.|
|---+---+---|
|..3|..5|...|
|..6|...|7..|
|...|1..|8..|
|---+---+---|
|.7.|.2.|...|
|...|...|.3.|
|...|..9|.58|
*-----------* |
|
|
Back to top |
|
|
keith
Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
|
Posted: Sat Jul 28, 2012 6:22 am Post subject: |
|
|
After basics: Code: | +-------------------+-------------------+-------------------+
| 3 1 29 | 7 59 *24 | 45 8 6 |
| 6 5 289 | 289 1389 12348 | 134 7 124 |
| 48 *24 7 | 258 6 1238 | 135 9 12 |
+-------------------+-------------------+-------------------+
| 7 48 3 | 6 48 5 | 19 2 19 |
| 1 89 6 | 289 389 238 | 7 4 5 |
| 45 249 25 | 1 49 7 | 8 6 3 |
+-------------------+-------------------+-------------------+
| 58 7 58 | 3 2 6 | 49 1 49 |
| 9 6 4 | 58 158 18 | 2 3 7 |
| 2 3 1 | 4 7 9 | 6 5 8 |
+-------------------+-------------------+-------------------+ |
R3C2 and R1C6 are pincers on 2. Don't ask me why.
Otherwise, a short chain (extended XY-wing) solves it.
Keith |
|
Back to top |
|
|
arkietech
Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
|
Posted: Sat Jul 28, 2012 10:54 am Post subject: |
|
|
I used the 9's
Code: | *--------------------------------------------------------------------*
| 3 1 a29 | 7 5-9 24 | 45 8 6 |
| 6 5 289 | 289 1389 12348 | 134 7 124 |
| 48 24 7 | 258 6 1238 | 135 9 12 |
|----------------------+----------------------+----------------------|
| 7 48 3 | 6 48 5 | 19 2 19 |
| 1 89 6 | 289 389 238 | 7 4 5 |
| 45 c249 b25 | 1 d49 7 | 8 6 3 |
|----------------------+----------------------+----------------------|
| 58 7 58 | 3 2 6 | 49 1 49 |
| 9 6 4 | 58 158 18 | 2 3 7 |
| 2 3 1 | 4 7 9 | 6 5 8 |
*--------------------------------------------------------------------*
m-wing
(9=2)r1c3-r6c3=(2-9)r6c2=9r6c5 => -9r1c5; stte
if r1c3 is not a 9 then r6c5 ia a 9 |
|
|
Back to top |
|
|
tlanglet
Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
|
Posted: Sat Jul 28, 2012 1:33 pm Post subject: |
|
|
keith wrote: | After basics: Code: | +-------------------+-------------------+-------------------+
| 3 1 29 | 7 59 *24 | 45 8 6 |
| 6 5 289 | 289 1389 12348 | 134 7 124 |
| 48 *24 7 | 258 6 1238 | 135 9 12 |
+-------------------+-------------------+-------------------+
| 7 48 3 | 6 48 5 | 19 2 19 |
| 1 89 6 | 289 389 238 | 7 4 5 |
| 45 249 25 | 1 49 7 | 8 6 3 |
+-------------------+-------------------+-------------------+
| 58 7 58 | 3 2 6 | 49 1 49 |
| 9 6 4 | 58 158 18 | 2 3 7 |
| 2 3 1 | 4 7 9 | 6 5 8 |
+-------------------+-------------------+-------------------+ |
R3C2 and R1C6 are pincers on 2. Don't ask me why.
Keith |
One explanation is a w-wing(24) with a long path on (4) as the SL which is in box3
(4)r1c7-(4=2)r1c6
(4)r2c79-(4=5=9)r1c75-(9=4)r6c5-r4c5=r4c2-(4=2)r3c2; -2r1c3,r3c46
Ted |
|
Back to top |
|
|
tlanglet
Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
|
Posted: Sat Jul 28, 2012 1:36 pm Post subject: |
|
|
My first solution was a messy axy-wing(24-9)r3c2+r1c3|r6c2 with fin (4)r6c2
The xy-wing gives pincers (9) in r1c3 & r6c2; however (9)r6c2-(9=4)r6c5-r4c5=r4c2-(4=2)r3c2-(2=9)r1c3.
Finally the fin gives (4)r6c2-(4=5=2)r6c13-(2=9)r1c3
Thus, all paths lead to r1c3=9 to complete the puzzle.
At that point I realized that multiple short chains were possible using similar logic paths.
Ted |
|
Back to top |
|
|
Marty R.
Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
|
Posted: Sat Jul 28, 2012 5:53 pm Post subject: |
|
|
Four-cell XY-Chain. R6c5=4--->r1c3=9; r1c5<>9. |
|
Back to top |
|
|
|