View previous topic :: View next topic |
Author |
Message |
ffred
Joined: 29 Oct 2012 Posts: 19 Location: Kent, Egland
|
Posted: Tue Oct 30, 2012 9:14 am Post subject: Menneske impossible |
|
|
Hi. I introduced myself in the theory forum & said that I'd post a few Menneskes. Before going on a short trip I ran off some post-basic sheets of Menneske 'impossibles', and here's one. I can't give you the number or the starting grid, but as far as I remember there are no solved squares.
Code: |
+------------------+--------------------+------------------+
| 267 25678 2358 | 369 67 1 | 4 35679 567 |
| 467 4567 345 | 3469 8 2 | 1 35679 567 |
| 9 1 34 | 5 467 3467 | 8 367 2 |
+------------------+--------------------+------------------+
| 247 2478 248 | 12468 124567 45678 | 9 25678 3 |
| 5 9 1 | 2368 267 3678 | 267 2678 4 |
| 2347 23478 6 | 248 9 4578 | 257 1 578 |
+------------------+--------------------+------------------+
| 8 23456 9 | 1246 12456 456 | 23567 2567 1567 |
| 1 2456 245 | 7 3 4568 | 256 2568 9 |
| 236 2356 7 | 1268 1256 9 | 2356 4 1568 |
+------------------+--------------------+------------------+
|
Play this puzzle online at the Daily Sudoku site
Hope you like it, Fred |
|
Back to top |
|
|
aran
Joined: 19 Apr 2010 Posts: 70
|
Posted: Tue Oct 30, 2012 2:36 pm Post subject: |
|
|
Code: | *-----------------------------------------------------------------------------*
| 2367 235678 2358 | 369 67 1 | 4 35679 567 |
| 3467 34567 345 | 3469 8 2 | 1 35679 567 |
| 9 1 34 | 5 467 3467 | 8 367 2 |
|-------------------------+-------------------------+-------------------------|
| 247 2478 248 | 12468 124567 45678 | 9 25678 3 |
| 5 9 1 | 2368 267 3678 | 267 2678 4 |
| 2347 23478 6 | 2348 9 34578 | 257 1 578 |
|-------------------------+-------------------------+-------------------------|
| 8 23456 9 | 1246 12456 456 | 23567 23567 1567 |
| 1 2456 245 | 7 3 4568 | 256 2568 9 |
| 236 2356 7 | 1268 1256 9 | 2356 4 1568 |
*-----------------------------------------------------------------------------* | (4=3)r3c3-3r12c123=(AUR-UR)39r12c48=sis{567r12c8 ; 4r2c4 ; 6r12c4}
567r12c8=>QNT567r12c89-(67=3)r3c8 -(3=4)r3c3
4r2c4-r2c123=4r3c3
6r12c4-(6=7)r1c5-(67=34)r3c56-34r3c3 : impossible
: =>r3c3=4 ste |
|
Back to top |
|
|
JC Van Hay
Joined: 13 Jun 2010 Posts: 494 Location: Charleroi, Belgium
|
Posted: Tue Oct 30, 2012 3:04 pm Post subject: |
|
|
Hmmm ....
(4=3)r3c3-3r12c"12"3=DP(39)r12c48 :=> -3r3c3; LC and Singles to the end |
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Tue Oct 30, 2012 4:02 pm Post subject: |
|
|
Impossible it ain't.
Code: | +--------------------------------------------------------------------------------+
| 267 25678 2358 | 369 67 1 | 4 35679 567 |
| 467 4567 345 | 3469 8 2 | 1 35679 567 |
| 9 1 34 | 5 467 3467 | 8 367 2 |
|--------------------------+--------------------------+--------------------------|
| 247 2478 248 | 12468 124567 45678 | 9 25678 3 |
| 5 9 1 | 2368 267 3678 | 267 2678 4 |
| 2347 23478 6 | 248 9 4578 | 257 1 578 |
|--------------------------+--------------------------+--------------------------|
| 8 23456 9 | 1246 12456 456 | 23567 2567 1567 |
| 1 2456 245 | 7 3 4568 | 256 2568 9 |
| 236 2356 7 | 1268 1256 9 | 2356 4 1568 |
+--------------------------------------------------------------------------------+
# 148 eliminations remain
M-Ring C (6=7)r1c5 - r3c56 = (7-6)r3c8 = (6)r3c56 - loop => r3c8<>3; r12c4<>6
r12c48 <39> UR Type 1.2223 <> 39 r2c4
|
|
|
Back to top |
|
|
Marty R.
Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
|
Posted: Tue Oct 30, 2012 6:25 pm Post subject: |
|
|
daj95376 wrote: | Impossible it ain't.
Code: | +--------------------------------------------------------------------------------+
| 267 25678 2358 | 369 67 1 | 4 35679 567 |
| 467 4567 345 | 3469 8 2 | 1 35679 567 |
| 9 1 34 | 5 467 3467 | 8 367 2 |
|--------------------------+--------------------------+--------------------------|
| 247 2478 248 | 12468 124567 45678 | 9 25678 3 |
| 5 9 1 | 2368 267 3678 | 267 2678 4 |
| 2347 23478 6 | 248 9 4578 | 257 1 578 |
|--------------------------+--------------------------+--------------------------|
| 8 23456 9 | 1246 12456 456 | 23567 2567 1567 |
| 1 2456 245 | 7 3 4568 | 256 2568 9 |
| 236 2356 7 | 1268 1256 9 | 2356 4 1568 |
+--------------------------------------------------------------------------------+
# 148 eliminations remain
M-Ring C (6=7)r1c5 - r3c56 = (7-6)r3c8 = (6)r3c56 - loop => r3c8<>3; r12c4<>6
r12c48 <39> UR Type 1.2223 <> 39 r2c4
|
|
Danny,
You mentioned in another thread that a characteristic of an M-Ring is having pincers in the same house, box 2 in this case. What is the loop in your notation and what allows the elimination of the 3? |
|
Back to top |
|
|
arkietech
Joined: 31 Jul 2008 Posts: 1834 Location: Northwest Arkansas USA
|
Posted: Tue Oct 30, 2012 6:50 pm Post subject: |
|
|
daj95376 wrote: | Impossible it ain't.
Code: | +--------------------------------------------------------------------------------+
| 267 25678 2358 | 369 67 1 | 4 35679 567 |
| 467 4567 345 | 3469 8 2 | 1 35679 567 |
| 9 1 34 | 5 467 3467 | 8 367 2 |
|--------------------------+--------------------------+--------------------------|
| 247 2478 248 | 12468 124567 45678 | 9 25678 3 |
| 5 9 1 | 2368 267 3678 | 267 2678 4 |
| 2347 23478 6 | 248 9 4578 | 257 1 578 |
|--------------------------+--------------------------+--------------------------|
| 8 23456 9 | 1246 12456 456 | 23567 2567 1567 |
| 1 2456 245 | 7 3 4568 | 256 2568 9 |
| 236 2356 7 | 1268 1256 9 | 2356 4 1568 |
+--------------------------------------------------------------------------------+
# 148 eliminations remain
M-Ring C (6=7)r1c5 - r3c56 = (7-6)r3c8 = (6)r3c56 - loop => r3c8<>3; r12c4<>6
r12c48 <39> UR Type 1.2223 <> 39 r2c4
|
|
Wow!
I missed the ring or loop completely. There is a Sue de Cog with the same eliminations. I have got to revisit loops. |
|
Back to top |
|
|
ffred
Joined: 29 Oct 2012 Posts: 19 Location: Kent, Egland
|
Posted: Tue Oct 30, 2012 8:33 pm Post subject: |
|
|
You guys are fast workers!
I used the ALS pair A = (6,7)r1c5 , B = (3,4,6,7) r3c356, doubly linked by 6 & 7. r3c8 <>3, r12c4 <> 6. Followed by a UR type 1: r2c4 = 4.
I'll study your answers!
Fred |
|
Back to top |
|
|
keith
Joined: 19 Sep 2005 Posts: 3355 Location: near Detroit, Michigan, USA
|
Posted: Tue Oct 30, 2012 9:17 pm Post subject: |
|
|
Marty R. wrote: | daj95376 wrote: | Impossible it ain't.
Code: | +--------------------------------------------------------------------------------+
| 267 25678 2358 | 369 A67 1 | 4 35679 567 |
| 467 4567 345 | 3469 8 2 | 1 35679 567 |
| 9 1 34 | 5 B467 B3467 | 8 C367 2 |
|--------------------------+--------------------------+--------------------------|
| 247 2478 248 | 12468 124567 45678 | 9 25678 3 |
| 5 9 1 | 2368 267 3678 | 267 2678 4 |
| 2347 23478 6 | 248 9 4578 | 257 1 578 |
|--------------------------+--------------------------+--------------------------|
| 8 23456 9 | 1246 12456 456 | 23567 2567 1567 |
| 1 2456 245 | 7 3 4568 | 256 2568 9 |
| 236 2356 7 | 1268 1256 9 | 2356 4 1568 |
+--------------------------------------------------------------------------------+
# 148 eliminations remain
M-Ring C (6=7)r1c5 - r3c56 = (7-6)r3c8 = (6)r3c56 - loop => r3c8<>3; r12c4<>6
r12c48 <39> UR Type 1.2223 <> 39 r2c4
|
|
Danny,
You mentioned in another thread that a characteristic of an M-Ring is having pincers in the same house, box 2 in this case. What is the loop in your notation and what allows the elimination of the 3? |
Marty, the elimination C<>3 is certainly correct but, like you, I do not see how it follows from the M-ring.
Note that if A is 6, C is 6, if A is 7, C is 7. C cannot be 3. It's a Sue de Coq kind of move.
Keith |
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Tue Oct 30, 2012 10:34 pm Post subject: |
|
|
Marty R. wrote: | daj95376 wrote: | Code: | M-Ring C (6=7)r1c5 - r3c56 = (7-6)r3c8 = (6)r3c56 - loop => r3c8<>3; r12c4<>6
r12c48 <39> UR Type 1.2223 <> 39 r2c4
|
|
You mentioned in another thread that a characteristic of an M-Ring is having pincers in the same house, box 2 in this case. What is the loop in your notation and what allows the elimination of the 3? |
There is a weak link in r3c8 between <7> and <6>. When there is a loop/ring present, this translates into eliminating all other candidates in r3c8.
M-Ring C (6=7)r1c5 - r3c56 = (7-6)r3c8 = (6)r3c56 - loop => r3c8<>3; r12c4<>6
M-Ring Translation: left-to-right
r1c5<>6; r1c5=7; r3c56<>7; r3c8=7; r3c8<>6; r3c56=6; (loop) r1c5<>6
M-Ring Translation: right-to-left
r1c5=6; r3c56<>6; r3c8=6; r3c8<>7; r3c56=7; r1c5<>7; (loop) r1c5=6
No matter whether you assume r1c5<>6 or you assume r1c5=6, the loop only allows for r3c8=7 or r3c8=6. All other candidates can be eliminated in r3c8.
Regards, Danny |
|
Back to top |
|
|
tlanglet
Joined: 17 Oct 2007 Posts: 2468 Location: Northern California Foothills
|
Posted: Wed Oct 31, 2012 1:33 pm Post subject: |
|
|
I also found the AUR(39)r12c49 SIS=3r3c68 => r3c3<>3
Ted |
|
Back to top |
|
|
|