dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Far too much fun!

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Fri Nov 23, 2007 2:28 am    Post subject: Far too much fun! Reply with quote

Another Menneske of the same ilk.

Code:
Puzzle: M5837481sh(14)
+-------+-------+-------+
| . . 4 | . . . | 1 . . |
| 6 . 9 | . 3 . | . . 4 |
| . 1 . | 2 . . | 9 . . |
+-------+-------+-------+
| 7 . . | . . 3 | . . 2 |
| . . . | 8 7 2 | . 4 . |
| . 4 8 | . 5 . | . 9 3 |
+-------+-------+-------+
| . . . | . . 8 | . . 1 |
| . 6 . | 4 . . | . . . |
| . . 1 | . . 7 | . 2 . |
+-------+-------+-------+

Happy Thanksgiving!

In Detroit, an inch of wet snow. And watching the Lions lose the football game is such a tradition! At least I have my Beaujolais.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Nov 23, 2007 6:27 am    Post subject: Reply with quote

This puzzle kept me up past my already late bedtime. I must've missed some solution path because it took:

Type 1 UR
Two XY-Wings
Two XY-Wings w' coloring
Three W-Wings w' coloring
Simple coloring
And another XY-Wing w' coloring to finish it off.

Quote:
And watching the Lions lose the football game is such a tradition!


Hey, they can still go 4-1 to achieve the 10-win promise (boast). Rolling Eyes
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Fri Nov 23, 2007 3:26 pm    Post subject: Reply with quote

Marty,

The basics get you to here:
Code:
+-------------------+-------------------+-------------------+
| 358   2     4     | 567   689   569   | 1     35678 5678  |
| 6     78    9     | 157   3     15    | 2     578   4     |
| 358   1     57    | 2     68    4     | 9     35678 5678  |
+-------------------+-------------------+-------------------+
| 7     5     6     | 9     4     3     | 8     1     2     |
| 1     9     3     | 8     7     2     | 56    4     56    |
| 2     4     8     | 16    5     16    | 7     9     3     |
+-------------------+-------------------+-------------------+
| 9     37    57    | 356   2     8     | 4     56    1     |
| 58    6     2     | 4     1     59    | 3     78    789   |
| 4     38    1     | 356   69    7     | 56    2     89    |
+-------------------+-------------------+-------------------+

There are two XY-wings, taking out <5> in R9C4 and <8> from R3C9.

There is also coloring on <8> (look at R29) that takes out <8> in R8C8 and R13C9.

That reveals another XY-wing which takes out <5> in R3C8. With a bit of cleaning up, you are here:
Code:
+--------------+---------------+--------------+
| 38$  2   4   | 567  689# 569 | 1   358# 67  |
| 6    78  9   | 157& 3    15  | 2   58@  4   |
| 358# 1   57  | 2    68#  4   | 9   38$  67  |
+--------------+---------------+--------------+
| 7    5   6   | 9    4    3   | 8   1    2   |
| 1    9   3   | 8    7    2   | 6   4    5   |
| 2    4   8   | 16   5    16  | 7   9    3   |
+--------------+---------------+--------------+
| 9    37  57% | 35%  2    8   | 4   6    1   |
| 58@  6   2   | 4    1    59  | 3   7    89  |
| 4    38  1   | 36   69   7   | 5   2    89  |
+--------------+---------------+--------------+

The two cells $ must be <3>, because of the Type 6 UR to which they belong.

The two cells @ are a W-wing connected by the chain of <8>'s marked #. The <5> in R8C1 can be extended by coloring (%) to R7C4, so the W-wing takes out <5> in R2C4 &. You are here:
Code:
+-------------+-------------+-------------+
| 3   2   4   | 567 689 569 | 1   58  67  |
| 6   78  9   | 17  3   15  | 2   58  4   |
| 58  1   57  | 2   68  4   | 9   3   67  |
+-------------+-------------+-------------+
| 7   5   6   | 9   4   3   | 8   1   2   |
| 1   9   3   | 8   7   2   | 6   4   5   |
| 2   4   8   | 16  5   16  | 7   9   3   |
+-------------+-------------+-------------+
| 9   37  57  | 35  2   8   | 4   6   1   |
| 58  6   2   | 4   1   59  | 3   7   89  |
| 4   38  1   | 36  69  7   | 5   2   89  |
+-------------+-------------+-------------+

This is a BUG+3. If you examine C456, to avoid the deadly pattern you must have R1C4 is <6>, R1C5 is <6>, or R1C6 is <5>. In other words, R1C6 is not <6>, and the puzzle is solved!

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Nov 23, 2007 5:46 pm    Post subject: Reply with quote

A couple of comments, Keith.

The BUG+3 reasoning is still something that is beyond me.

I arrived at a different ending position since I don't see the XY-Wing that, with coloring, finished it off for me.

I used the 58 W-Wing. According to my notes, I colored it for an elimination, then further colored it for another elimination.

And that 58 W-Wing--I assume you noticed--is more simply connected by the 8s in column 2. Regardless, I can't follow the chain of 8s, because there are three 8s in row 1, so how are r1c58 connected?
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Fri Nov 23, 2007 7:14 pm    Post subject: Reply with quote

Marty R. wrote:
And that 58 W-Wing--I assume you noticed--is more simply connected by the 8s in column 2.


No, I didn't see that! Embarassed

Marty R. wrote:
Regardless, I can't follow the chain of 8s, because there are three 8s in row 1, so how are r1c58 connected?


Marty, the UR places a <3> in R1C1 and R3C8. Then, the coloring chain on <8> is R3C1 - R3C5 - R1C5 - R1C8.

Marty R. wrote:
The BUG+3 reasoning is still something that is beyond me.


Here's a longer explanation:

In the BUG situation, the Deadly Pattern (DP) is such that each candidate appears exacly twice in each row, column and box. Look at the candidates in C4:
5(6)7, 17, 16, 35, 36.
meaning that if R1C4 is <57> you have the DP. If R1C4 is <6>, that breaks up the DP.

Similarly for C5:
(6)89, 68, 69.

and for C6:
(5)69, 15, 16, 59.

Then, check the DP across R1:
5(6)7, (6)89, (5)69, 58, 67.

Each candidate in the DP appears twice in R1.

So, to avoid the DP, R1C4 is <6>, and or R1C5 is <6>, and or R1C6 is <5>. Either of these means R1C6 is not <6>.

Keith
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Fri Nov 23, 2007 9:04 pm    Post subject: Reply with quote

Thanks Keith, I've printed out the grid and your explanations for further digestion.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Fri Nov 23, 2007 10:08 pm    Post subject: Reply with quote

Marty,

When you have mostly two-value cells, and two or three three-value cells, the idea is this:

1. Check some element (row, column, or block) that has only two-value cells. Does each candidate occur exactly twice? If so, good. (If not, there is no BUG.)

2. Find an element that has only one three-value cell. Identify the two candidates that would make the DP, and the one candidate which would kill the DP. If you can do this, good. (If not, there is no BUG.)

3. Do step 2 for the remaining three-value cells, using the DP candidates found in step 2. If you can do this, you have arrived at the DP. All two-value cells, each candidate occurs exactly twice in each element.

4. You now have a list of cells and candidates, any one of which will kill the DP. Only ONE of them is necessarily true. It's up to you to figure out if this is useful information. Each case is different.

Some examples, for two three-value cells, a BUG+2:

a. Cell 1 is X OR Cell 2 is X. Like the pincers of a chain, any cell that sees both cannot be X.

b. Cell 1 is X OR Cell 2 is Y. Cell 1 = X forces Cell 2 = Y. Cell 2 must be Y.

By the way, I don't think this is very obvious. I stared at this thread's puzzle for a long time before I figured out that the BUG killers were saying R1C6 is not <6>.

Best wishes,

Keith
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Wed Nov 28, 2007 10:55 pm    Post subject: Reply with quote

I'm catching up after the holiday...

Completed this in 5 fairly simple steps without DPs:

1. Skyscraper R29 removes <8> from R13C9 & R8C8.
2. XY Wing, pivot R2C2, removes <5> from R3C89.
3. XY Wing, pivot R9C5, removes <5> from R9C4.
4. W Wing on {38} in B13 removes <3> from R1C8 & R3C1.
5. XY Wing, pivot R9C5, with Pincer R3C5 transported to R8C1 removes <8> from R9C9.
Back to top
View user's profile Send private message Visit poster's website
re'born



Joined: 28 Oct 2007
Posts: 80

PostPosted: Thu Nov 29, 2007 10:37 am    Post subject: Reply with quote

Here are three not so simple steps that lead to a solution:

1) xy-wing: pivot at r9c5 eliminates 5 from r9c4.
2) finned swordfish: c158/r138 fin r2c8 => r13c9 <> 8
After cleaning up, we get to
Code:
.---------------.---------------.---------------.
| 358  2    4   | 567  689  569 | 1    358  67  |
| 6    78   9   | 157  3    15  | 2    58   4   |
| 358  1    57  | 2    68   4   | 9    358  67  |
:---------------+---------------+---------------:
| 7    5    6   | 9    4    3   | 8    1    2   |
| 1    9    3   | 8    7    2   | 6    4    5   |
| 2    4    8   | 16   5    16  | 7    9    3   |
:---------------+---------------+---------------:
| 9    37   57  | 35   2    8   | 4    6    1   |
| 58   6    2   | 4    1    59  | 3    7    89  |
| 4    38   1   | 36   69   7   | 5    2    89  |
'---------------'---------------'---------------'

where we do a little 3D-multicoloring (but only using 2 colors) (I started from r9c4) which reveals the following AIC:
3) (6=3)r9c4 - (3=5)r7c4 - (5)r7c3 = (5-7)r3c3 = (7-6)r3c9 = (6)r3c5. This implies r9c5 <> 6, solving the puzzle.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group