dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Stumped again!

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Jan 05, 2008 7:58 pm    Post subject: Stumped again! Reply with quote

I've stared at this one for hours, it seems. Any suggestions?

Thank you in advance,

Keith

Code:
Puzzle: M5459715sh(21)
+-------+-------+-------+
| . 7 1 | 6 . . | 8 2 . |
| . . . | . . 2 | . . . |
| 2 9 . | . . . | . 4 3 |
+-------+-------+-------+
| . 1 9 | . . 8 | . . . |
| 4 . . | . 5 . | . . 7 |
| . . . | 9 . . | 1 8 . |
+-------+-------+-------+
| 1 4 . | . . . | . 7 9 |
| . . . | . . 5 | . . . |
| . 3 7 | 2 . . | 4 6 . |
+-------+-------+-------+

Here is where I am stuck, after an XYZ-wing:
Code:
+-------------------+-------------------+-------------------+
| 3     7     1     | 6     49    49    | 8     2     5     |
| 8     56    4     | 357   37    2     | 679   19    16    |
| 2     9     56    | 1578  178   17    | 67    4     3     |
+-------------------+-------------------+-------------------+
| 67    1     9     | 347   23467 8     | 236   5     246   |
| 4     28    38    | 13    5     136   | 2369  39    7     |
| 67    25    35    | 9     23467 467   | 1     8     246   |
+-------------------+-------------------+-------------------+
| 1     4     2     | 38    368   36    | 5     7     9     |
| 9     68    68    | 47    47    5     | 23    13    12    |
| 5     3     7     | 2     19    19    | 4     6     8     |
+-------------------+-------------------+-------------------+

I see a flightless W-wing, XYZ-wing, and two XY-wings. Question Question
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Jan 05, 2008 8:51 pm    Post subject: Reply with quote

Well, I found that the two XY-wings are linked, and you can make a couple of eliminations that solve R5C4 as <1>. Revealing a W-wing that takes out <7> in R46C5.

Then Question

Working ...

Keith
Back to top
View user's profile Send private message
Johan



Joined: 25 Jun 2007
Posts: 206
Location: Bornem Belgium

PostPosted: Sat Jan 05, 2008 10:58 pm    Post subject: Reply with quote

There is a 4-cell xy-chain with pincer ends in R8C9 and R6C2, that takes out <2> in R6C9, that results in a naked [467] triple in R6.
Back to top
View user's profile Send private message Send e-mail
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Sat Jan 05, 2008 11:23 pm    Post subject: Reply with quote

Code:
+-------------------+-------------------+-------------------+
| 3     7     1     | 6     49    49    | 8     2     5     |
| 8     56    4     | 357   37    2     | 679   19    16    |
| 2     9     56    | 578   178   17    | 67    4     3     |
+-------------------+-------------------+-------------------+
| 67    1     9     | 347   2346  8     | (2)36  5    g246  |
| 4     G28   38    | 13    5     36    | R2369 39    7     |
| 67    R25   35    | 9     23    47    | 1     8     46    |
+-------------------+-------------------+-------------------+
| 1     4     2     | 38    368   36    | 5     7     9     |
| 9     68    68    | 47    47    5     | g23   13    1r2   |
| 5     3     7     | 2     19    19    | 4     6     8     |
+-------------------+-------------------+-------------------+
 


after Johan's elimination you can kill the 2 in r4c7 by multicoloring.
Back to top
View user's profile Send private message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Jan 05, 2008 11:59 pm    Post subject: Reply with quote

storm_norm wrote:
after Johan's elimination you can kill the 2 in r4c7 by multicoloring.

norm,

That is not correct. In fact, R4C7 is <2> in the solution.

Each leg of the multicoloring needs to have an even number of cells, which is also an odd number of links.

Johan,

How do you find XY-chains? I see your elimination, but I would never have found it myself. Clearly, I have something to learn.

I think we are here:

Code:
+----------------+----------------+----------------+
| 3    7    1    | 6    49   49   | 8    2    5    |
| 8    56   4    | 357  37   2    | 679  19   16   |
| 2    9    56   | 578  178  17   | 67   4    3    |
+----------------+----------------+----------------+
| 67   1    9    | 347  2346 8    | 236  5    246  |
| 4    28   38   | 1    5    36   | 2369 39   7    |
| 67   25   35   | 9    23   47   | 1    8    46   |
+----------------+----------------+----------------+
| 1    4    2    | 38   368  36   | 5    7    9    |
| 9    68   68   | 47   47   5    | 23   13   12   |
| 5    3    7    | 2    19   19   | 4    6    8    |
+----------------+----------------+----------------+


Keith
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Sun Jan 06, 2008 12:33 am    Post subject: Reply with quote

sorry keith I thought i saw something that actually isn't there. everyone ignore my post.

xy-chains - very hard to look for because they don't actually involve just one candidate, they can involve many candidates. its actually a powerful technique when you have many bi-value cells. xy-chains exploit bi-value cells.

an xy-wing is the simplest xy-chain.

the ends of the xy-chain act the same as the pincers in an xy-wing.

I know there are very good examples of xy-chains out there, but most are very hard to illustrate if you create it from scratch. the xy-chain that johan used is a nice example.

r6c9 is not a 2 if:

r8c9=1 then r2c9=6 then r2c2=5 then r6c2=2
and !! that 2 has to be there on the other end going the other way

r6c2=5 then r2c2=6 then r2c9=1 then r8c9=2

since there is a two on both ends, any {2} those ends see can be eliminated.

most people show this as johan did by describing the end cells, but might also list the combinations: 12-16-56-25... the 2 on both ends can see the r6c9 cell.
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Sun Jan 06, 2008 12:59 am    Post subject: Reply with quote

also here is a good link for xy- chains explanation.

http://www.scanraid.com/AdvanStrategies.htm#XYC
Back to top
View user's profile Send private message
Johan



Joined: 25 Jun 2007
Posts: 206
Location: Bornem Belgium

PostPosted: Sun Jan 06, 2008 2:09 am    Post subject: Reply with quote

Quote:
How do you find XY-chains? I see your elimination, but I would never have found it myself. Clearly, I have something to learn.


Keith,

This is one of the advanced steps that i first learned, I've more trouble finding an x-wing than an xy-chain, but for finding those chains I use a simple
method, when I use the first digit(x) of a bivalue cell, I mark the other bivalue cells( I'm a P&P solver) which contain digit y,then I look if the both
cells(x and y) can see an y digit( pincer effect)

Now there is another one in R8C7, using digit <3>(x) you must find bivalue cells that contains an y digit(2), two of them <28>,<25> are in Box 4 and another
one <23> is in Box 5, but only one has a pincer effect,then i'll try to find me a way through the bivalue cells to end up in R5C2, eliminating <2> in R5C7.

[23-31-19-93-38-82]
Back to top
View user's profile Send private message Send e-mail
Victor



Joined: 29 Sep 2005
Posts: 207
Location: NI

PostPosted: Mon Jan 07, 2008 12:12 am    Post subject: Reply with quote

For a change, I did a puzzle quite quickly - luck of the draw I guess. I've been inspired by the way in which Steve & others can build chains from a couple of conjugate links. Here it is:

R5C7 ≠ 2 ==> R5C2 = 2 ==> R6C2 = 5 ==> now just an XY-chain that ends ==> R8C9 = 2.

Since as with any AIC you can reverse this (i.e. R8C9 ≠ 2 ==> R5C7 = 2), we can eliminate the 2 in R8C7. And, perhaps surprisingly, that's it - not another non-basic move needed.
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group