dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

friday 1/11 extreme #915

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Sat Jan 12, 2008 8:13 am    Post subject: friday 1/11 extreme #915 Reply with quote

Code:
. . 8 | 1 . . | . . .
. . 2 | . 6 . | 5 . .
5 . . | . 9 . | . . 2
---------------------
7 4 . | . . . | 1 . .
. 8 . | 5 . 4 | . 7 .
. . 1 | . . . | . 5 3
---------------------
6 . . | . 8 . | . . 5
. . 9 | . 3 . | 7 . .
. . . | . . 6 | 3 . .


http://www.sudoku.org.uk/DailySudoku.asp?day=11/01/2008

norm
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Sat Jan 12, 2008 8:34 am    Post subject: Reply with quote

Code:
349     379     8       | 1       5       2       | 6       349     479
1       379     2       | 348     6       378     | 5       349     479
5       367     346     | 34      9       37      | 8       1       2
---------------------------------------------------------------------
7       4       5       | 36      2       39      | 1      #689    #689
39      8       36      | 5       1       4       | 2       7       69
29      269     1       | 68      7       89      | 4       5       3
---------------------------------------------------------------------
6       23      34      | 7       8       1       | 9       24      5
48      1       9       | 2       3       5       | 7      #468    #468
28      5       7       | 9       4       6       | 3       28      1



am I correct that this {6,8} UR solves the puzzle?? by taking out the 8's in r8c89.
Back to top
View user's profile Send private message
Johan



Joined: 25 Jun 2007
Posts: 206
Location: Bornem Belgium

PostPosted: Sat Jan 12, 2008 2:23 pm    Post subject: Reply with quote

I took a diversion on the two <8> pincer cells of the idle [28-29-89] xy-wing@. Both or either of the pincer cells (A,B) must contain digit <8>.
When R9C1=8 => R8C1=4 => R7C3=3 => R5C3=6(c)
Or R6C6=8 => R6C3=6(d)
Now I have two new <6> pincers in R5C3(c) and in R6C4(d), which eliminate <6> in R6C2, that solves the puzzle.
Code:

+--------------------------+--------------------------+--------------------------+
| 349         379     8    | 1           5       2    | 6        349        479  |
| 1           379     2    | 348         6       378  | 5        349        479  |
| 5           367     346  | 34          9       37   | 8        1          2    |
+--------------------------+--------------------------+--------------------------+
| 7           4       5    | 36          2       39   | 1        689        689  |
| 39          8       36 c | 5           1       4    | 2        7          69   |
|@29          2-[6]9  1    | 68 d        7      @89 B | 4        5          3    |
+--------------------------+--------------------------+--------------------------+
| 6           23      34   | 7           8       1    | 9        24         5    |
| 48          1       9    | 2           3       5    | 7        468        468  |
|@28 A        5       7    | 9           4       6    | 3        28         1    |
+--------------------------+--------------------------+--------------------------+
Back to top
View user's profile Send private message Send e-mail
ravel



Joined: 21 Apr 2006
Posts: 536

PostPosted: Sat Jan 12, 2008 3:06 pm    Post subject: Reply with quote

storm_norm wrote:
am I correct that this {6,8} UR solves the puzzle?? by taking out the 8's in r8c89.
There are 2 strong links for both 6 and 8 in the UR. From those i see, that r4c9<>6 and r8c8<>8.

Note, that 6 or 8 must be elsewhere in the rows/boxes/columns to avoid the DP.
From the 2 rows we can see, that either r4c4=6 (=> r6c4=8 => r6c6=9) or r8c1=8 (=> r8c6=9), so we can eliminate 9 from r6c2.
This opens an xy-wing to solve the puzzle.

Similarly in the columns or boxes either r5c9=6 or r9c8=8, but i dont see another elimnation from that.

Maybe i should mention, that also 49-689-468 in rows 2, 4 and 6 form a deadly pattern. So either r2c8=3 (=> r1c8=9) or r2c9=4 (=> r1c289=379), so 9 could be eliminated from r1c1 also this way.
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Sat Jan 12, 2008 3:57 pm    Post subject: Reply with quote

ravel wrote:
storm_norm wrote:
am I correct that this {6,8} UR solves the puzzle?? by taking out the 8's in r8c89.
There are 2 strong links for both 6 and 8 in the UR. From those i see, that r4c9<>6 and r8c8<8> r6c4=8 => r6c6=9) or r8c1=8 (=> r8c6=9), so we can eliminate 9 from r6c2.
This opens an xy-wing to solve the puzzle.

Similarly in the columns or boxes either r5c9=6 or r9c8=8, but i dont see another elimnation from that.

Maybe i should mention, that also 49-689-468 in rows 2, 4 and 6 form a deadly pattern. So either r2c8=3 (=> r1c8=9) or r2c9=4 (=> r1c289=379), so 9 could be eliminated from r1c1 also this way.


thank you, Ravel.

note to self... Idea ...put the types of UR's to memorization.
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sat Jan 12, 2008 6:49 pm    Post subject: Reply with quote

Some extended Medusa coloring (what else?) revealed the following AIC that solves the puzzle:
(2)r6c1-(2)r9c1=(2-3)r7c2=(3)r7c3-(3)r5c3=(3-9)r5c1=(9-2)r6c1; r6c1<>2

In ordinary language: If r6c1 is <2>, then r7c2 is <2>, r7c3 is <3>, r5c1 is <3>, and r6c1 is <9>, contradicting the assumption that r6c1 is <2>. So, r6c1 cannot be <2>.
Back to top
View user's profile Send private message Visit poster's website
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group