dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

LAT 08-Feb-08

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sun Feb 10, 2008 9:21 am    Post subject: LAT 08-Feb-08 Reply with quote

No one posted this week's 5-star LAT/Freep puzzle. So, here it is. It's not so easy.
Code:

. . . | 1 . . | . . .
. 6 . | . . . | 1 4 9
1 8 . | . . . | . . .
------+-------+------
. 1 . | 8 . 6 | . . 3
3 . . | 4 7 9 | . . 8
6 . . | 5 . 3 | . 7 .
------+-------+------
. . . | . . . | . 6 2
2 5 4 | . . . | . 9 .
. . . | . . 4 | . . .
Back to top
View user's profile Send private message Visit poster's website
ravel



Joined: 21 Apr 2006
Posts: 536

PostPosted: Sun Feb 10, 2008 1:05 pm    Post subject: Reply with quote

Code:
 *--------------------------------------------------*
 | 57   4    39   | 1    69   257  | 378  238  56   |
 | 57   6    2    | 37   358  578  | 1    4    9    |
 | 1    8    39   | 69   4    257  | 37   23   56   |
 |----------------+----------------+----------------|
 | 4    1    7    | 8    2    6    | 9    5    3    |
 | 3    2    5    | 4    7    9    | 6    1    8    |
 | 6    9    8    | 5    1    3    | 2    7    4    |
 |----------------+----------------+----------------|
 | 89   3    1    | 79   589  578  | 4    6    2    |
 | 2    5    4    | 36   368  1    | 38   9    7    |
 | 89   7    6    | 2    389  4    | 5    38   1    |
 *--------------------------------------------------*

I tried to use the 37 pair.
r2c4=7 => r3c7=7 did not help.

Then i found r3c7=3 => r3c3=9 => r3c4=6 => r8c4=3 => r2c4=7
Transporting r2c4=7 => r7c4<>7 => r7c6=7 then elimiates 7 from r3c6.

This only gives one number, but also opens an xy-chain to eliminate 3 from r1c3.
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sun Feb 10, 2008 6:12 pm    Post subject: Reply with quote

I needed a Medusa trap because I couldn't see anything else. That led to a Type 1 UR and a W-Wing, after which another Medusa trap finished it off.
Back to top
View user's profile Send private message
nataraj



Joined: 03 Aug 2007
Posts: 1048
Location: near Vienna, Austria

PostPosted: Sun Feb 10, 2008 7:35 pm    Post subject: Reply with quote

Here's what I did:

From ravel's position, the xy-wing 39-69-36 is flightless, but extend the 36 in r8c4 via 38 - 38 in box 9 and the 3 in r3c8 is toast.

Unfotunately, this only solves r3c8 and r1c6.

But ... there is an xy chain now
'56' (r3c9) ... r3c6,r2c4...'36'(r8c4) that removes 6 from cell(s) r3c4 and the puzzle is solved
Back to top
View user's profile Send private message Send e-mail Visit poster's website
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sun Feb 10, 2008 10:03 pm    Post subject: Reply with quote

Quote:
From ravel's position, the xy-wing 39-69-36 is flightless, but extend the 36 in r8c4 via 38 - 38 in box 9 and the 3 in r3c8 is toast.

Nataraj,

How about an explanation for that extension? It has to be done via means that I'm unfamiliar with.
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sun Feb 10, 2008 10:36 pm    Post subject: Reply with quote

Marty,

The XY Wing induces a strong (inferential) link between the <3>s in the pincers, the <3>s in r8 are weakly linked, and those in b9 are strongly linked. Thus:

(3)r3c8-(3)r3c3=(3)r8c4-(3)r8c7=(3)r9c8-(3)r3c8; r3c8<>3

Transporting a pincer does not depend upon having only conjugate links. A short-cut way to consider it is: if r8c4 is <3>, then r8c7 is not <3>, so r9c8 must be <3>.
Back to top
View user's profile Send private message Visit poster's website
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sun Feb 10, 2008 10:58 pm    Post subject: Reply with quote

In Ravel's grid, the {89}r79c15 UR allows us to remove <8> from r7c5. This exposes a flightless XY Wing where the <5> in the r1c9 pincer can be transported to r3c6, eliminating <5> from r2c5 and r7c6. This gets us here:
Code:

 *---------------------------------------------------*
 | 57   4    39   | 1    69  (2)57 | 378   238  56   |
 | 57   6    2    | 37  [3]8  57[8]| 1     4    9    |
 | 1    8    39   | 69   4    257  | 37  [(2)]3 56   |
 |----------------+----------------+-----------------|
 | 4    1    7    | 8    2    6    | 9     5    3    |
 | 3    2    5    | 4    7    9    | 6     1    8    |
 | 6    9    8    | 5    1    3    | 2     7    4    |
 |----------------+----------------+-----------------|
 | 89   3    1    | 79   5    78   | 4     6    2    |
 | 2    5    4    |[3]6  368  1    | 38    9    7    |
 | 89   7    6    | 2    389  4    | 5    [3]8  1    |
 *---------------------------------------------------*

To avoid the {57}r12c16 UR, r1c6=2 and/or r2c6=8.

IF r1c6=2, then r3c8=2.
IF r2c8=8, r2c5=3, r8c4=3, r9c7=3, and r3c8=2.

Either way, r3c8=2.

This doesn't eliminate the need for an XY Chain. But, it is interesting.
Back to top
View user's profile Send private message Visit poster's website
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Sun Feb 10, 2008 11:21 pm    Post subject: Reply with quote

By the way, basic Medusa alone (without extensions) can solve the puzzle completely. First:
Code:

 *-----------------------------------------------------*
 | 57   4    3a9A | 1    6A9a  257   | 378   238  5A6a |
 | 57   6    2    | 3A7a 358   578   | 1     4    9    |
 | 1    8    3A9a | 6a9A 4     25A-7 | 37    23   5a6A |
 |----------------+------------------+-----------------|
 | 4    1    7    | 8    2     6     | 9     5    3    |
 | 3    2    5    | 4    7     9     | 6     1    8    |
 | 6    9    8    | 5    1     3     | 2     7    4    |
 |----------------+------------------+-----------------|
 | 89   3    1    | 7A9a 589  -57a8  | 4     6    2    |
 | 2    5    4    | 3a6A 36a8  1     | 38    9    7    |
 | 89   7    6    | 2    389   4     | 5     38   1    |
 *-----------------------------------------------------*

There are two eliminations in c6. Continuing:
Code:

 *-----------------------------------------------------*
 | 57   4    3a9A | 1    6A9a  2A5-7 | 38   2a38  5A6a |
 | 57   6    2    | 3A7a 3a8A -578a  | 1    4     9    |
 | 1    8    3A9a | 6a9A 4     2a5A  | 7    2A3a  5a6A |
 |----------------+------------------+-----------------|
 | 4    1    7    | 8    2     6     | 9    5     3    |
 | 3    2    5    | 4    7     9     | 6    1     8    |
 | 6    9    8    | 5    1     3     | 2    7     4    |
 |----------------+------------------+-----------------|
 | 8a9A 3    1    | 7A9a 5     7a8A  | 4    6     2    |
 | 2    5    4    | 3a6A 36a-8 1     | 38   9     7    |
 | 8A9a 7    6    | 2   -389A  4     | 5    38    1    |
 *-----------------------------------------------------*

These four eliminations finish it off.
Back to top
View user's profile Send private message Visit poster's website
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Mon Feb 11, 2008 1:57 am    Post subject: Reply with quote

Asellus wrote:
Marty,

The XY Wing induces a strong (inferential) link between the <3>s in the pincers, the <3>s in r8 are weakly linked, and those in b9 are strongly linked. Thus:

(3)r3c8-(3)r3c3=(3)r8c4-(3)r8c7=(3)r9c8-(3)r3c8; r3c8<>3

Transporting a pincer does not depend upon having only conjugate links. A short-cut way to consider it is: if r8c4 is <3>, then r8c7 is not <3>, so r9c8 must be <3>.


Thanks. Undoubtedly easier for me to understand than to actually spot, but I'll keep my eyes open.
Back to top
View user's profile Send private message
Earl



Joined: 30 May 2007
Posts: 677
Location: Victoria, KS

PostPosted: Mon Feb 11, 2008 2:13 am    Post subject: LA Reply with quote

Two xy-chains eliminating 7 from R1C7, and 3 from R9C5 will solve the puzzle.

Earl
Back to top
View user's profile Send private message Send e-mail
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Mon Feb 11, 2008 2:48 am    Post subject: Reply with quote

wow, the people reading this paper are getting some hard puzzles to solve.
Back to top
View user's profile Send private message
nataraj



Joined: 03 Aug 2007
Posts: 1048
Location: near Vienna, Austria

PostPosted: Mon Feb 11, 2008 7:49 am    Post subject: Reply with quote

Marty R. wrote:
Quote:
From ravel's position, the xy-wing 39-69-36 is flightless, but extend the 36 in r8c4 via 38 - 38 in box 9 and the 3 in r3c8 is toast.

Nataraj,

How about an explanation for that extension? It has to be done via means that I'm unfamiliar with.


Thanks to Asellus for giving the explanation how this works - I'd just add a little more about how I work:

After reading about "transport" in this forum last year (some time late November early December, if I remember correctly), I've made it a habit to check every "useless" xy-wing for possible extensions into an xy-chain.

In order to be useful, an xy-chain must have the same candidate in both end cells, so for the xy-wing to xy-chain extension I first look for "two more" cells {a,b} that contain:
a - the pincer candidate from the xy-wing (in our case "3")
b - any other candidate
either: those two cells "see" each other and one of the two must see a pincer cell of the xy-wing
or: those two cells "see" different ends of the xy-wing (in that case it is "b" that gets eliminated by the resulting xy-chain)

example: our xy-wing 39-69-36 could be extended to:
39-96-63-38-83 like here in this puzzle, or:
53-39-96-63-35 in some other hypothetical puzzle

Of course, there is no guarantee to find a useful xy-chain, but it is extremely easy to do - so I made that check part of my routine (ahem, if I am in the mood for routine, that is).

And, yes, there are other transports but less easy to spot so I usually do not find them. My limit for xy-chains seems to be 4-5 chainlinks, maybe 6.

___

P.S. The way I look at xy-wings is like
"If r3c8 is not 3, then ... r8c4 is 3" - look for cells that see both ends and have 3

This extends naturally (for me) into
"...then r8c7 is not 3 then r9c8 is 3" - again look for cells that see both ends and have 3

edited 1217GMT (after Asellus' post) to include transport from both ends


Last edited by nataraj on Mon Feb 11, 2008 12:22 pm; edited 1 time in total
Back to top
View user's profile Send private message Send e-mail Visit poster's website
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Mon Feb 11, 2008 8:49 am    Post subject: Reply with quote

Marty wrote:
Undoubtedly easier for me to understand than to actually spot, but I'll keep my eyes open.

Actually, transporting pincers is exactly the same as "extending" Medusa coloring. You have two <3> pincers, A and B, say. Any <3> that must be true if the pincer A <3> is true can serve as a transported pincer A. And, any <3> which must be true if pincer B is true can serve as a transported pincer B. Seen this way, you can transport both pincers at the same time safely.

You can even change digits. For instance, say there is a <7> that must be true if the A <3> is true and also a <7> which must be true if the B <3> is true. Then, these can be transported pincers for <7> eliminations from a wing with pincers in <3>.

This "if this is true then" approach is not elegant and so is objectionable to some. But... we won't go down that road. Let's just say that it's the "poor man's approach" to finding AICs.
Back to top
View user's profile Send private message Visit poster's website
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group