dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

DB Saturday Puzzle - August 19, 2006

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sat Aug 19, 2006 9:08 am    Post subject: DB Saturday Puzzle - August 19, 2006 Reply with quote

After finding a Unique Rectangle I am stuck for the moment.

Keith
Code:
Puzzle: DB081906  ******
+-------+-------+-------+
| . . . | . . . | 3 7 . |
| . . . | 8 . 5 | 9 4 . |
| . . . | 2 . 7 | 8 . 5 |
+-------+-------+-------+
| 4 . 9 | . . . | . 5 . |
| . 5 . | . 8 . | . 3 . |
| . 7 . | . . . | 2 . 4 |
+-------+-------+-------+
| 2 . 5 | 3 . 4 | . . . |
| . 4 3 | 9 . 8 | . . . |
| . 1 6 | . . . | . . . |
+-------+-------+-------+
Back to top
View user's profile Send private message
ravel



Joined: 21 Apr 2006
Posts: 536

PostPosted: Sat Aug 19, 2006 1:28 pm    Post subject: Reply with quote

Code:
 *-----------------------------------------------------------*
 | 5     89    48    | 16    49   A16    | 3     7     2     |
 | 16    2     7     | 8     3     5     | 9     4     16    |
 | 39    36    14    | 2     49    7     | 8     16    5     |
 |-------------------+-------------------+-------------------|
 | 4     36    9     | 7     2     136   | 16    5     8     |
 | 16    5     2     | 4     8    A1-69  | 167   3     79    |
 |B38    7    B18    |B16    5    A39    | 2     169   4     |
 |-------------------+-------------------+-------------------|
 | 2     89    5     | 3     16    4     | 167   1689  79    |
 | 7     4     3     | 9     16    8     | 5     2     16    |
 | 89    1     6     | 5     7     2     | 4     89    3     |
 *-----------------------------------------------------------*
With 3 strong links the 6 in r5c6 can be eliminated (r5c1-r2c1,r2c9-r3c8,r6c8-r6c4).
And there is an ALS, where the 3 is locked to r6c6 in A (1369) and to r6c1 in B (1368), when r4c6=6. But as always i first found a chain and then constructed the ALS.
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Aug 19, 2006 3:15 pm    Post subject: Reply with quote

Quote:
And there is an ALS,


What's that stand for, other than the dreaded disease?
Back to top
View user's profile Send private message
TKiel



Joined: 22 Feb 2006
Posts: 292
Location: Kalamazoo, MI

PostPosted: Sat Aug 19, 2006 3:20 pm    Post subject: Reply with quote

Almost Locked Set. Not sure what the definition is.

Nice little puzzle, as usual. I tried like heck to make an XY-chain with all the (1,6) pairs but never could get a result. Finally realized it almost had to be an XY-wing, which took a while to find as there were many possibilities.
Back to top
View user's profile Send private message
Marty R.



Joined: 12 Feb 2006
Posts: 5770
Location: Rochester, NY, USA

PostPosted: Sat Aug 19, 2006 5:17 pm    Post subject: Reply with quote

I also wanted to use the remote pairs technique with 16, but couldn't. I also couldn't find any X-Wings, XY-Wings, strong links, etc., so I had to rely on the old standby, the chain.
Back to top
View user's profile Send private message
ravel



Joined: 21 Apr 2006
Posts: 536

PostPosted: Sat Aug 19, 2006 9:41 pm    Post subject: Reply with quote

Hi Marty,

here is the original ALS link, but i am sure, you dont need it Smile
Back to top
View user's profile Send private message
David Bryant



Joined: 29 Jul 2005
Posts: 559
Location: Denver, Colorado

PostPosted: Sat Aug 19, 2006 11:58 pm    Post subject: Finding the chain of remote pairs Reply with quote

Marty R wrote:
I also wanted to use the remote pairs technique with 16, but couldn't.

Here's how I used the "double-implication chain" technique to extend the chain of remote pairs far enough to crack this puzzle.
Code:
*-----------------------------------------------------------*
 | 5     89    48    | 16    49    16    | 3     7     2     |
 | 16+   2     7     | 8     3     5     | 9     4     16-   |
 | 39    36    14    | 2     49    7     | 8     16+   5     |
 |-------------------+-------------------+-------------------|
 | 4     36    9     | 7     2     136   | 16    5     8     |
 | 16-   5     2     | 4     8     169   | 167   3     79    |
 | 38    7     18    | 16    5     39    | 2     169   4     |
 |-------------------+-------------------+-------------------|
 | 2     89    5     | 3     16+   4     | 167   1689* 79    |
 | 7     4     3     | 9     16-   8     | 5     2     16+   |
 | 89    1     6     | 5     7     2     | 4     89    3     |
 *-----------------------------------------------------------*

As indicated by the +/- signs above, there's already an extensive network of {1, 6} pairs spreading throughout the puzzle. Our "target" cell -- the one needed to make useful inferences from the pattern -- is r7c8, marked with an asterisk above.

We start the double-implication chain in r2c1.

A. r2c1 = 1 ==> r5c1 = 6 ==> r6c3 = 1 ==> r6c4 = 6 ==> r6c8 = 9 ==> r9c8 = 8 ==> {1, 6} at r7c8.

B1. r2c1 = 6 ==> r5c1 = 1 ==> r4c2 = 6 ==> r4c7 = 1
B2. r2c1 = 6 ==> r2c9 = 1 ==> r3c8 = 6
B3 (r4c7 = 1 & r3c8 = 6) ==> r6c8 = 9 ==> r9c8 = 8 ==> {1, 6} at r7c8.

So the double-implication chain reveals that neither "8" nor "9" can appear at r7c8, leaving the grid looking like this.
Code:
*-----------------------------------------------------------*
 | 5     89    48    | 16    49    16    | 3     7     2     |
 | 16+   2     7     | 8     3     5     | 9     4     16-   |
 | 39    36    14    | 2     49    7     | 8     16+   5     |
 |-------------------+-------------------+-------------------|
 | 4     36    9     | 7     2     136   | 16    5     8     |
 | 16-   5     2     | 4     8     169   | 167   3     79    |
 | 38    7     18    | 16    5     39    | 2     169   4     |
 |-------------------+-------------------+-------------------|
 | 2     89    5     | 3     16+   4     | 167   16-   79    |
 | 7     4     3     | 9     16-   8     | 5     2     16+   |
 | 89    1     6     | 5     7     2     | 4     89    3     |
 *-----------------------------------------------------------*

Now we see that r7c7 = 7, and that r6c8 = 9, after which we can extend the {1, 6} network a bit farther, and the entire puzzle falls to pieces. dcb
Back to top
View user's profile Send private message Send e-mail Visit poster's website
keith



Joined: 19 Sep 2005
Posts: 3355
Location: near Detroit, Michigan, USA

PostPosted: Sun Aug 20, 2006 10:40 am    Post subject: Another (neat) solution Reply with quote

Here's what I did. After the usaul basic moves, and a Type 1 UR to remove <16> in R6C6:

Code:
+----------------+----------------+----------------+
| 5    89   48   | 16   49   16   | 3    7    2    |
| 16   2    7    | 8    3    5    | 9    4    16   |
| 39   36B  14   | 2    49   7    | 8    16b  5    |
+----------------+----------------+----------------+
| 4    36b  9    | 7    2    136  | 16   5    8    |
| 16B  5    2    | 4    8    169c | 167  3    79   |
| 38   7    18   | 16a  5    39   | 2    169A 4    |
+----------------+----------------+----------------+
| 2    89   5    | 3    16   4    | 167  1689 79   |
| 7    4    3    | 9    16   8    | 5    2    16   |
| 89   1    6    | 5    7    2    | 4    89   3    |
+----------------+----------------+----------------+

Ravel also found this. I applied the logic of a fork or skyscraper:
If a is <6>, c is not <6>.
If a is not <6>, A is <6>, b is not <6>, B is <6>, and c is not <6>.
So, remove <6> from R5C6.

Now, a short chain:
R6C4 = <1> results in R5C6 = <9> and R6C6 = <3>.
R6C4 = <1> results in R5C3 = <8> and R6C1 = <3>.
So, R6C4 = <6>, which after some more basic moves brings us here:
Code:
+----------------+----------------+----------------+
| 5    89   48   | 1    49   6    | 3    7    2    |
| 16   2    7    | 8    3    5    | 9    4    16   |
| 39   36   14   | 2    49   7    | 8    16   5    |
+----------------+----------------+----------------+
| 4    36   9    | 7    2    13   | 16   5    8    |
| 16   5    2    | 4    8    19   | 167  3    79   |
| 38   7    18   | 6    5    39   | 2    19   4    |
+----------------+----------------+----------------+
| 2    89   5    | 3    16   4    | 17   1689 79   |
| 7    4    3    | 9    16   8    | 5    2    16   |
| 89   1    6    | 5    7    2    | 4    89   3    |
+----------------+----------------+----------------+


There is an X-wing on <1> in R36(C38) which takes out <1> in R7C8.

There is an XY-wing on <361> in R45 which takes out <1> in R5C6.
There is an XY-wing on <391> in R6C6 which takes out <1> in R4C7.

Either of these XY-wings solves the puzzle.

Keith
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group