dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

help please

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
nataraj



Joined: 03 Aug 2007
Posts: 1048
Location: near Vienna, Austria

PostPosted: Mon Oct 29, 2007 7:37 am    Post subject: help please Reply with quote

This is from daily-sudoku.com, "very hard" of Oct 21.
(original puzzle:http://www.daily-sudoku.com/save_money.php?id=1581)
After basics, some coloring and an xy-wing I got stuck here:

Code:

+--------------------------+--------------------------+--------------------------+
| 278     2468    2468     | 2589    12578   1279     | 3       146789  679      |
| 1       38      5        | 6       4       379      | 89      789     2        |
| 2378    23468   9        | 238     12378   1237     | 148     14678   5        |
+--------------------------+--------------------------+--------------------------+
| 6       249     3        | 2789    278     279      | 15      15      49       |
| 89      7       48       | 1       36      5        | 49      2       36       |
| 29      5       1        | 2349    236     23469    | 7       36      8        |
+--------------------------+--------------------------+--------------------------+
| 4       12389   28       | 2357    12357   123      | 6       35789   379      |
| 5       236     26       | 2347    9       8        | 24      347     1        |
| 2389    12389   7        | 2345    12356   1246     | 24589   34589   349      |
+--------------------------+--------------------------+--------------------------+

Any hints appreciated.
Back to top
View user's profile Send private message Send e-mail Visit poster's website
re'born



Joined: 28 Oct 2007
Posts: 80

PostPosted: Mon Oct 29, 2007 11:14 am    Post subject: Reply with quote

Tricky one. The easiest thing I can spot to start is a hidden pair in column 6 <46>. After that, here is what I did. While looking for xyz-wings, I spotted the following almost xy-ring (or what Denis Berthier would probably call an xyt-ring):
Code:
.------------------------.------------------------.------------------------.
| 278     2468    2468   | 2589    12578   1279   | 3       146789  679    |
| 1       38*     5      | 6       4       379    | 89*     79-8    2      |
| 2378    2468-3  9      | 238     12378   1237   | 18-4    14678   5      |
:------------------------+------------------------+------------------------:
| 6       249     3      | 2789    278     279    | 15      15      49     |
| 89      7       48     | 1       36      5      | 49*     2       36     |
| 29      5       1      | 2349    236     46     | 7       36      8      |
:------------------------+------------------------+------------------------:
| 4       1289-3  28     | 2357    12357   123    | 6       35789   379    |
| 5       236*    26*    | 347-2   9       8      | 24*     347     1      |
| 2389    1289-3  7      | 2345    12356   46     | 258-49 34589   349    |
'------------------------'------------------------'------------------------'

The idea is that if it wasn't for the 2 in r8c2, you would have an xy-ring and be able to eliminate:
2 from r8c4,
3 from r379c2,
4 from r39c7,
8 from r2c8,
9 from r9c7.
But given that the 2 in r8c2 doesn't change the max multiplicity of 2 in the set, we can still make these deductions (or Denis would say that the 2 in r8c2 sees the right linking candidate 2 in r8c7).
After clearing up some 4's (locked candidates) in column 8, we get to:
Code:
.------------------------.------------------------.------------------------.
| 278     2468    2468   | 2589    12578   1279   | 3       146789  679    |
| 1       38*     5      | 6       4       379    | 89*     79*     2      |
| 2378    2468    9      | 238     12378   1237   | 18      14678   5      |
:------------------------+------------------------+------------------------:
| 6       249     3      | 2789    278     279    | 15      15      49     |
| 89      7       48     | 1       36      5      | 49      2       36     |
| 29      5       1      | 2349    236     46     | 7       36      8      |
:------------------------+------------------------+------------------------:
| 4       1289    28     | 2357    12357   123    | 6       35789   379    |
| 5       26-3    26     | 347     9       8      | 24      37*     1      |
| 2389    1289    7      | 2345    12356   46     | 258     3589    349    |
'------------------------'------------------------'------------------------'

where there is a legitimate xy-chain:
r8c2 -3- {r2c2 -8- r2c7 -9- r2c8 -7- r8c8} -3- r8c2, => r8c2 <> 3. This move solves the puzzle.
Back to top
View user's profile Send private message
nataraj



Joined: 03 Aug 2007
Posts: 1048
Location: near Vienna, Austria

PostPosted: Mon Oct 29, 2007 2:46 pm    Post subject: Reply with quote

great post, re'born!

Thx for the help - I did hope to make something of that almost-ring but could not get over the r8c2 cell. Let me see if I understand the reasoning behind your statement:
Quote:
given that the 2 in r8c2 doesn't change the max multiplicity of 2 in the set, we can still make these deductions


if r8c2=2 then r8c4<>2 PLUS the ring works in the same way (counterclockwise) as if r8c3 had been "2"
if r8c2<>2 we have a standard xy-ring which works in both directions

In both cases, all the candidates that constitute the (weak) links in the ring are removed from all cells outside the ring that "see" the link (i.e. 3 from c2, 8 from r2, 4 from c7)

I hope I got this correctly.
Thanks again!
Back to top
View user's profile Send private message Send e-mail Visit poster's website
re'born



Joined: 28 Oct 2007
Posts: 80

PostPosted: Mon Oct 29, 2007 3:47 pm    Post subject: Reply with quote

nataraj wrote:
great post, re'born!

Thank you! Smile
nataraj wrote:

Let me see if I understand the reasoning behind your statement:
Quote:
given that the 2 in r8c2 doesn't change the max multiplicity of 2 in the set, we can still make these deductions


if r8c2=2 then r8c4<>2 PLUS the ring works in the same way (counterclockwise) as if r8c3 had been "2"
if r8c2<>2 we have a standard xy-ring which works in both directions


You've got it!

The way I think of it is using a process called subset counting (see my post here). The basic idea is to count how many times a number could show up in some set of cells in the solution. Take the set of 6 cells *'d in my post. For each of the digits in the chain, how many times could they possibly show up in a solution? If you look hard, you'll see that each digit only shows up in one unit, and hence can only occur once in a solution. But there are only 6 digits and 6 cells to fill, so each digit must occur exactly once in a solution. Thus, for instance, any cell in row 8 outside of our pattern cannot be a 2 since otherwise it will kill all of the 2's in our pattern, an impossibility.

In general, this means that an xy-chain can have extra candidates in some of the cells, as long as they are placed 'appropriately'. I call these almost xy-chains.

Denis Berthier has a variation on this technique called xyt-chains, a concept that overlaps with almost xy-chains in many situations. For a comparison of the two concepts, see my post almost xy-chains vs. xyt-chains.
Back to top
View user's profile Send private message
Asellus



Joined: 05 Jun 2007
Posts: 865
Location: Sonoma County, CA, USA

PostPosted: Mon Oct 29, 2007 8:37 pm    Post subject: Reply with quote

Or, you could just say that it is an ALS Chain Loop. One "node" happens to be a 2-cell ALS rather than a one cell ALS. The XY Chain Loop is just the simplest form.
Back to top
View user's profile Send private message Visit poster's website
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group