View previous topic :: View next topic |
Author |
Message |
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Sun Sep 05, 2010 1:02 am Post subject: Puzzle 10/09/05: C |
|
|
Code: | +-----------------------+
| . . . | . . . | 3 7 9 |
| . . . | . 6 . | 1 . . |
| 3 . 7 | . . . | . . . |
|-------+-------+-------|
| 6 . . | 1 5 . | . . 3 |
| . 5 . | 3 . . | 7 9 . |
| 9 . . | . . 8 | . . . |
|-------+-------+-------|
| . 3 . | . 8 . | . 1 . |
| 5 . . | . . . | 9 . . |
| 8 6 . | 5 . . | . . 4 |
+-----------------------+
|
Play this puzzle online at the Daily Sudoku site |
|
Back to top |
|
|
peterj
Joined: 26 Mar 2010 Posts: 974 Location: London, UK
|
Posted: Sun Sep 05, 2010 9:10 am Post subject: |
|
|
I don't normally do these sort of moves... (so it may be wrong!)
Quote: | 6-cell ADP(56) r3c89|r6c78|r7c79, DP avoided by (2)r3c9 or (4)r6c7
(4=2)r2c8 - ADP(56):(2)r3c9=(4)r6c7 ; r4c8<>4, r3c7<>4 |
|
|
Back to top |
|
|
JC Van Hay
Joined: 13 Jun 2010 Posts: 494 Location: Charleroi, Belgium
|
Posted: Sun Sep 05, 2010 11:29 am Post subject: |
|
|
A one step solution :
Quote: | Unique Loop of length 6 (56)[R3C98,R6C87,R7C79] : 2-SIS AIC : SIS[(2)r3c9,(4)r6c7] (42)R4C8 : => r5c9,r2c8<>2
| Or the following proof : Quote: | Remote pairs (24) : => r5c1<>24
3-SIS X Chain (including an Empty Rectangle) : (2)C9B58 : => r3c46<>2
XYZ Wing (12-4), pivot at R1C5 : => r3c5,r5c6<>4
3-SIS- X Chain : (4)C27B2 : => r8c4<>4
5-SIS AIC written as an ALS XY Wing : [(42)R1C1 (21)R1C5] [(19)R9C5 (94)R7C4] (48)R1C4 : "ANP(42=1) ANP(1=94) (48)R1C4" : => r1c4<>4
|
|
|
Back to top |
|
|
Marty R.
Joined: 12 Feb 2006 Posts: 5770 Location: Rochester, NY, USA
|
Posted: Tue Sep 07, 2010 12:30 am Post subject: |
|
|
I struggled with this more than any recent puzzle I can remember.
Remote Pairs (24)
Finned X-Wing (2)
XYZ-Wing (124)
AIC; r6c4<>2 |
|
Back to top |
|
|
daj95376
Joined: 23 Aug 2008 Posts: 3854
|
Posted: Tue Sep 07, 2010 1:39 am Post subject: |
|
|
It does have an XY-rated solution -- dominated by <2> and <4>.
Code: | r24\c18 Skyscraper <> 24 r5c1 Remote Pair
c59\r35 finned X-Wing <> 2 r3c46
<12+4> XYZ-Wing r1c5/r1c1+r3c6 <> 4 r1c4
<12+4> XYZ-Wing r1c5/r3c6+r5c5 <> 4 r3c5
<46+2> XYZ-Wing r8c4/r6c4+r7c6 <> 2 r7c4 maybe extraneous
+--------------------------------------------------------------+
| 24 18 6 | 28 124 5 | 3 7 9 |
| 24 9 5 | 7 6 3 | 1 24 8 |
| 3 18 7 | 489 129 14 | 456 56 256 |
|--------------------+--------------------+--------------------|
| 6 7 24 | 1 5 9 | 8 24 3 |
| 1 5 8 | 3 24 246 | 7 9 26 |
| 9 24 3 | 26 7 8 | 456 56 1 |
|--------------------+--------------------+--------------------|
| 7 3 249 | 49 8 24 | 56 1 56 |
| 5 24 124 | 246 3 1246 | 9 8 7 |
| 8 6 19 | 5 19 7 | 2 3 4 |
+--------------------------------------------------------------+
# 45 eliminations remain
M-Wing 3B (2=4)r1c1 - r1c5 = (4-2)r5c5 = (2)r13c5 => r1c4<>2 -or-
M-Wing 3B (2=4)r5c5 - r1c5 = (4-2)r1c1 = (2)r1c45 => r3c5<>2
-or-
W-Wing (4=2)r1c1 - r1c45 = r13c5 - (2=4)r5c5 => r1c5<>4
|
|
|
Back to top |
|
|
|