dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Krampus Edition - "?" #1

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Wed Dec 08, 2010 6:13 pm    Post subject: Krampus Edition - "?" #1 Reply with quote

Code:
 *-----------*
 |.6.|94.|...|
 |...|..2|3..|
 |132|...|..4|
 |---+---+---|
 |...|1..|8..|
 |3..|...|..2|
 |..5|..7|...|
 |---+---+---|
 |2..|...|463|
 |..8|2..|...|
 |...|.59|.7.|
 *-----------*

Code:
060940000000002300132000004000100800300000002005007000200000463008200000000059070

(c) Helmut Saueregger
Back to top
View user's profile Send private message
storm_norm



Joined: 18 Oct 2007
Posts: 1741

PostPosted: Thu Dec 09, 2010 7:55 am    Post subject: Reply with quote

Code:
+---------------+-----------------+-----------------+
| 8    6      7 | 9     4    3    | 15     2   15   |
| 5    9      4 | 7(6)  1    2    | 3      8   7(6) |
| 1    3      2 | 5678  678  568  | (67)   9   4    |
+---------------+-----------------+-----------------+
| 479  247    6 | 1     29   45   | 8      3   579  |
| 3    48(7)  1 | 4568  689  4568 | 59(7)  45  2    |
| 49   28     5 | 3     28   7    | 169    14  169  |
+---------------+-----------------+-----------------+
| 2    5      9 | 78    78   1    | 4      6   3    |
| 467  (47)   8 | 2     3    6-4  | 159    15  159  |
| 6-4  1      3 | (46)  5    9    | 2      7   8    |
+---------------+-----------------+-----------------+

#1...(4=6)r9c4 - (6)r2c4 = (6)r2c9 - (6=7)r3c7 - (7)r5c8 = (7)r5c2 - (7=4)r8c2;
r9c1 <> 4
r8c6 <> 4

Code:
+---------------+------------------+------------------+
| 8      6    7 | 9     4     3    | 15   2     15    |
| 5      9    4 | 67    1     2    | 3    8     67    |
| 1      3    2 | 5678  67-8  (58) | 67   9     4     |
+---------------+------------------+------------------+
| 47(9)  247  6 | 1     (29)  4(5) | 8    3     79(5) |
| 3      478  1 | 568   689   45-8 | 579  4(5)  2     |
| (49)   28   5 | 3     (28)  7    | 169  (14)  169   |
+---------------+------------------+------------------+
| 2      5    9 | 78    78    1    | 4    6     3     |
| 47     47   8 | 2     3     6    | 159  (15)  159   |
| 6      1    3 | 4     5     9    | 2    7     8     |
+---------------+------------------+------------------+

#2...(8=2)R6C5 - (2=9)R4C5 - (9)R4C1 = (9-4)R6C1 = (4-1)R6C8 = (1-5)R8C8 = (5)R5C8 - (5)R4C9 = (5)R4C6 - (5=8)R3C6;
R3C5 <> 8
R5C6 <> 8

Code:
+--------------+--------------+---------------+
| 8    6     7 | 9   4     3  | 15    2   15  |
| 5    9     4 | 67  1     2  | 3     8   67  |
| 1    3     2 | 5   6-7   8  | 6(7)  9   4   |
+--------------+--------------+---------------+
| 479  247   6 | 1   29    45 | 8     3   579 |
| 3    (78)  1 | 68  689   45 | 9(7)  45  2   |
| 49   2(8)  5 | 3   2(8)  7  | 169   14  169 |
+--------------+--------------+---------------+
| 2    5     9 | 78  (78)  1  | 4     6   3   |
| 47   47    8 | 2   3     6  | 159   15  159 |
| 6    1     3 | 4   5     9  | 2     7   8   |
+--------------+--------------+---------------+

#3... (7=8)R7C5 - (8)R6C5 = (8)R6C2 - (8=7)R5C2 - (7)R5C7 = (7)R3C7; R3C5 <> 7
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Thu Dec 09, 2010 2:42 pm    Post subject: Reply with quote

A lucky find on an m-wing with an ANT instead of bivalue...
Code:
 *-------------------------------------------------------------*
 | 8     6     7     | 9     4       3     | (15)  2     15    |
 | 5     9     4     | 67    1       2     | 3     8     67    |
 | 1     3     2     | 5678  (6)78   568   | 7-6   9     4     |
 |-------------------+---------------------+-------------------|
 | 479   247   6     | 1     29      45    | 8     3     579   |
 | 3     478   1     | 4568  (6)8(9) 4568  | 57(9) 45    2     |
 | 49    28    5     | 3     28      7     | (169) 14    169   |
 |-------------------+---------------------+-------------------|
 | 2     5     9     | 78    78      1     | 4     6     3     |
 | 467   47    8     | 2     3       46    | (159) 15    159   |
 | 46    1     3     | 46    5       9     | 2     7     8     |
 *-------------------------------------------------------------*

 ANT(6=159)r168c7 - (9)r5c7=(9-6)r5c5=r3c5 ; r3c7<>6
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Thu Dec 09, 2010 7:12 pm    Post subject: Reply with quote

Peter, you came thiiiissss close to catching ronk's pattern for an L3-Wing: X=6, Y=9, Z=7

Code:
L2-Wing:  (X)a = (X)b - (X)c = (X-Y)d = (Y)e     "a" and "e" in same house; a<>Y, e<>X
L3-Wing:  (X)a = (X   -  Y)b = (Y-Z)c = (Z)d     "a" and "d" in same house; a<>Y, d<>X

I stumbled across it while reviewing the chains listed by my solver.
(I don't have it specifically programmed into my MWSL-Wing finder program.)

Regards, Danny
Back to top
View user's profile Send private message
peterj



Joined: 26 Mar 2010
Posts: 974
Location: London, UK

PostPosted: Thu Dec 09, 2010 8:19 pm    Post subject: Reply with quote

daj95376 wrote:
Peter, you came thiiiissss close to catching ronk's pattern for an L3-Wing

Well, I can see it now you point it out!

My head is still looking for two candidate m-wing like patterns and then I scavenge around for a bivalue, then a "pseudocell"/short xy-chain then an ALS - in order to create the A=B strong link to finish it off!

Looking for a strong-link on a third candidate will have to be next on the checklist!
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Thu Dec 09, 2010 8:52 pm    Post subject: Reply with quote

Peter, I'm terrible at finding patterns ... let alone chains. That's why I wrote my solver -- to have it show me the simple chains that I'd never find on my own.

That said, wait until you see the ridiculous solution that I'm about to post for "?" #2.
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Fri Dec 10, 2010 3:40 am    Post subject: Reply with quote

Code:
 *-----------------------------------------------------------*
 | 8     6     7     | 9     4     3     | 15    2     15    |
 | 5     9     4     | 67    1     2     | 3     8     67    |
 | 1     3     2     | 5678  678   568   | 67    9     4     |
 |-------------------+-------------------+-------------------|
 | 479   247   6     | 1     29   d45    | 8     3     579   |
 | 3     478   1     | 4568  689  d4568  | 579   45    2     |
 | 49    28    5     | 3     28    7     | 169   14    169   |
 |-------------------+-------------------+-------------------|
 | 2     5     9     | 78    78    1     | 4     6     3     |
 | 467   47    8     | 2     3    c46    | 159   15    159   |
 |a46    1     3     |b46    5     9     | 2     7     8     |
 *-----------------------------------------------------------*

I need help to describe this move. I started looking at a possible m-wing in abcd: (4=6)r9c1-r9c4=(6-4)r8c6=(4)r45c6. Thus either r4c6=4 or r5c6=4, which act as a pincer with (4)r9c1.

I then extended the beginning of the chain: (4)r9c1-r6c1=r6c8-(4=5)r5c8-r5c46=(5)r4c6 which forces r5c6=4

How do I combine these two steps into an AIC that is meaningful?

Ted

P. S. A BUG+2 that forces r5c4=6 is needed to complete the puzzle.
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Fri Dec 10, 2010 5:17 am    Post subject: Reply with quote

tlanglet wrote:
Code:
 *-----------------------------------------------------------*
 | 8     6     7     | 9     4     3     | 15    2     15    |
 | 5     9     4     | 67    1     2     | 3     8     67    |
 | 1     3     2     | 5678  678   568   | 67    9     4     |
 |-------------------+-------------------+-------------------|
 | 479   247   6     | 1     29   d45    | 8     3     579   |
 | 3     478   1     | 4568  689  d4568  | 579   45    2     |
 | 49    28    5     | 3     28    7     | 169   14    169   |
 |-------------------+-------------------+-------------------|
 | 2     5     9     | 78    78    1     | 4     6     3     |
 | 467   47    8     | 2     3    c46    | 159   15    159   |
 |a46    1     3     |b46    5     9     | 2     7     8     |
 *-----------------------------------------------------------*

I need help to describe this move. I started looking at a possible m-wing in abcd: (4=6)r9c1-r9c4=(6-4)r8c6=(4)r45c6. Thus either r4c6=4 or r5c6=4, which act as a pincer with (4)r9c1.

I then extended the beginning of the chain: (4)r9c1-r6c1=r6c8-(4=5)r5c8-r5c46=(5)r4c6 which forces r5c6=4

How do I combine these two steps into an AIC that is meaningful?

I don't agree with the part in red above. If I were to join your chains into a single AIC, the logic would boil down to:

if r4c6=4 then ( r4c6=4 or r5c6=4) -- which is meaningless.

The wrinkle in your logic is that the extension forces r5c6=4 or r5c4=4.
Back to top
View user's profile Send private message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Fri Dec 10, 2010 1:26 pm    Post subject: Reply with quote

Danny,

I wondered about the validity of my conclusion, but convinced myself it was OK. Maybe next time I will get it correct.................

Ted
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group