dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Vanhagen Extreme November 28, 2011

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
tlanglet



Joined: 17 Oct 2007
Posts: 2468
Location: Northern California Foothills

PostPosted: Mon Nov 28, 2011 5:05 am    Post subject: Vanhagen Extreme November 28, 2011 Reply with quote

Code:

+-------+-------+-------+
| 6 . . | 7 9 1 | . . 2 |
| 9 . . | . 2 . | . . 7 |
| . . . | 6 . 4 | . . . |
+-------+-------+-------+
| . . 1 | 3 6 9 | 4 . . |
| . 6 . | . . . | . 7 . |
| . . 5 | 2 8 7 | 1 . . |
+-------+-------+-------+
| . . . | 8 . 3 | . . . |
| 5 . . | . 1 . | . . 9 |
| 3 . . | 9 7 2 | . . 4 |
+-------+-------+-------+

Play online

After basics:
Code:
*-----------------------------------------------------------*
 | 6     345   8     | 7     9     1     | 35    345   2     |
 | 9     134   34    | 5     2     8     | 36    1346  7     |
 | 127   1257  27    | 6     3     4     | 589   1589  158   |
 |-------------------+-------------------+-------------------|
 | 278   27    1     | 3     6     9     | 4     258   58    |
 | 28    6     39    | 1     4     5     | 289   7     38    |
 | 4     39    5     | 2     8     7     | 1     69    36    |
 |-------------------+-------------------+-------------------|
 | 127   49    49    | 8     5     3     | 267   126   16    |
 | 5     278   27    | 4     1     6     | 2378  238   9     |
 | 3     18    6     | 9     7     2     | 58    158   4     |
 *-----------------------------------------------------------*


I tried some almost moves this time and found a winner.

First, an anp(34=1)r2c32-(1=8)r9c2-(8=5)r9c7-(5=3)r1c7; r2c78<>3 which set up the heavy hammer......

Code:
ant(589=2)r395c7-(9)r5c7=(9-6)r6c8=r6c9-(6=1)r7c9-r9c8=r9c2-r23c2=r3c1-r3c89=(1-4)r2c8=r1c8-(4=5)r1c2; r1c7<>5
                                                  \
                                                    \
                                                      -(1=58)r9c87-(8)r8c7; r8c7<>8


Ted
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Mon Nov 28, 2011 8:33 am    Post subject: Reply with quote

Another one (in R7,B6) ...

Wing : ANP(16=2)r7c89-ANP(2=58)r4c89-ANP(8=36)r56c9 => +1r7c89;stte
Or
... : ANP(16=2)r7c89-ANQ(2=3568)B6 => +1r7c89;stte
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Mon Nov 28, 2011 7:16 pm    Post subject: Reply with quote

JC Van Hay wrote:
Another one (in R7,B6) ...

Wing : ANP(16=2)r7c89-ANP(2=58)r4c89-ANP(8=36)r56c9 => +1r7c89;stte
Or
... : ANP(16=2)r7c89-ANQ(2=3568)B6 => +1r7c89;stte

Maybe JC sees his chains as being complete, but I had to add an additional SL to get them to work for me.

Code:
First chain w/additional SL:

(16=2)r7c89 - (2=58)r4c89 - (8=3=6=1)r567c9                   => r7c1,r9c8<>1

-equivalent notation-

(16=2)r7c89 - (2=58)r4c89 - (8=3)r5c9 - (3=6)r6c9 - (6=1)r7c9 => r7c1,r9c8<>1

Unfortunately, my solver didn't find this chain path. I believe it has to do with my solver not allowing an elimination to occur twice for a candidate in a cell; e.g., (16=2)r7c89 creates r7c89<>6 and this prohibits (6=1)r7c9 from creating r7c9<>6. Hmmm!!!
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Mon Nov 28, 2011 9:55 pm    Post subject: Reply with quote

Danny,

I fully understand your POV. I disliked re-using the SL (6=1)r7c9 at the end of the chains, so I dropped it.

On the other hand, the use of ALS hides the xyt nature of the chain :

    (1=6)r7c9-(6=3)r6c9-(3=8)r5c9-(8=5)r4c9-[5(8#3)=2]r4c8-[2(6#1)=1]r7c8 => 1r7c9=1r7c8
where #1 and #3 refers to the 1st and 3rd SL respectively.

This is maybe why your solver doesn't find the chain.

JC
Back to top
View user's profile Send private message
ronk



Joined: 07 May 2006
Posts: 398

PostPosted: Mon Nov 28, 2011 10:29 pm    Post subject: Reply with quote

JC Van Hay wrote:
Danny,

I fully understand your POV. I disliked re-using the SL (6=1)r7c9 at the end of the chains, so I dropped it.

On the other hand, the use of ALS hides the xyt nature of the chain ...

That's unfortunate. Chains with endpoint-overlap are true chains and are not nettish like xyt-"chains".


Last edited by ronk on Tue Nov 29, 2011 1:01 pm; edited 1 time in total
Back to top
View user's profile Send private message
daj95376



Joined: 23 Aug 2008
Posts: 3854

PostPosted: Wed Nov 30, 2011 6:38 pm    Post subject: Reply with quote

While editing variable names in my chain() routine, I ran across a section of code that hadn't been updated to handle multiple values on one side of a SL. After updating chain(), I finally managed to get JC's chain. (It's the second one listed below.)

Code:
 +--------------------------------------------------------------+
 |  6     345   8     |  7     9     1     |  35    345   2     |
 |  9     134   34    |  5     2     8     |  36    1346  7     |
 |  127   1257  27    |  6     3     4     |  589   1589  158   |
 |--------------------+--------------------+--------------------|
 |  278   27    1     |  3     6     9     |  4     258   58    |
 |  28    6     39    |  1     4     5     |  289   7     38    |
 |  4     39    5     |  2     8     7     |  1     69    36    |
 |--------------------+--------------------+--------------------|
 |  127   49    49    |  8     5     3     |  267   126   16    |
 |  5     278   27    |  4     1     6     |  2378  238   9     |
 |  3     18    6     |  9     7     2     |  58    158   4     |
 +--------------------------------------------------------------+
 # 60 eliminations remain

 (58=1)r34c9 - r3c1 = r7c1 - (16=2)r7c89 - (2=58)r4c89          =>  r5c9<>8

 (16=2)r7c89 - (2=58)r4c89 - (8=3)r5c9 - (3=6)r6c9 - (6=1)r7c9  =>  r7c1,r9c8<>1
 (16=2)r7c89 - (2=58)r4c89 - (8=3=6=1)r567c9                    =>  r7c1,r9c8<>1

===== ===== ===== =====

JC wrote:
On the other hand, the use of ALS hides the xyt nature of the chain:

(1=6)r7c9-(6=3)r6c9-(3=8)r5c9-(8=5)r4c9-[5(8#3)=2]r4c8-[2(6#1)=1]r7c8 => 1r7c9=1r7c8

While I have an issue with some ALS() patterns being shorthand for an embedded network (as you indicate), I've accepted what I call the ANS() partition, of the full ALS() pattern, as being consistent with the philosophy of a "chain".

In the ANS() partition, a statement like (W=XYZ)r357c9 implies that the candidates X, Y, and Z (each) occur at least twice in r357c9. It also implies that all eliminations associated with <XYZ> occur in [c9] only. These implied constraints are not present in ALS() patterns used by others.

Regards, Danny
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group