dailysudoku.com Forum Index dailysudoku.com
Discussion of Daily Sudoku puzzles
 
 FAQFAQ   SearchSearch   MemberlistMemberlist   UsergroupsUsergroups   RegisterRegister 
 ProfileProfile   Log in to check your private messagesLog in to check your private messages   Log inLog in 

Swordfish challenges

 
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles
View previous topic :: View next topic  
Author Message
ffred



Joined: 29 Oct 2012
Posts: 19
Location: Kent, Egland

PostPosted: Sun Nov 04, 2012 10:36 pm    Post subject: Swordfish challenges Reply with quote

Keith suggested posting puzzles that seemed to need a swordish:
http://www.dailysudoku.com/sudoku/forums/viewtopic.php?p=31626&sid=3efa30cb40f3a2f3285828d231a16763#31626

This is Menneske 6912567.
Code:

+-------+-------+-------+
| . . . | . . 6 | 9 . . |
| . . 9 | . 3 . | . . . |
| 6 8 . | . . . | . . 4 |
+-------+-------+-------+
| . . . | . 1 . | 6 . 5 |
| . . . | . . 8 | . 1 . |
| . 2 8 | . . . | 7 . . |
+-------+-------+-------+
| 4 . . | . 8 . | . 5 6 |
| 2 . . | . 9 . | . . . |
| . . 5 | 3 . . | . . . |
+-------+-------+-------+

Play this puzzle online at the Daily Sudoku site

In case you prefer your grid post-basics:
Code:

+------------------+-------------------+-----------------+
| 357  13457 12347 | 124578 2457 6     | 9    237  12378 |
| 57   1457  9     | 124578 3    12457 | 1258 6    1278  |
| 6    8     1237  | 12579  257  12579 | 1235 237  4     |
+------------------+-------------------+-----------------+
| 379  347   347   | 2479   1    23479 | 6    8    5     |
| 3579 34567 3467  | 479    47   8     | 234  1    239   |
| 1    2     8     | 4569   456  3459  | 7    349  39    |
+------------------+-------------------+-----------------+
| 4    9     137   | 127    8    127   | 123  5    6     |
| 2    1367  1367  | 14567  9    1457  | 1348 347  1378  |
| 8    167   5     | 3      2467 1247  | 124  2479 1279  |
+------------------+-------------------+-----------------+

Play this puzzle online at the Daily Sudoku site

Challenge 1. I couldn't crack this puzzle without using the swordfish. Can you?
(You can achieve the same deletions as the swordfish with a loop as is sometimes (often?) the case:-
(2)r9c8 = r13c8 - r2c79 = r2c46 - r13c5 = r9c5 - loop
But that doesn't seem any easier and so doesn't count!)

Challenge 2. The swordfish merely made a little dent in the puzzle, though just enough. But it still required many moves. Can anyone see a killer move or two that makes the solution not too long?
Back to top
View user's profile Send private message
JC Van Hay



Joined: 13 Jun 2010
Posts: 494
Location: Charleroi, Belgium

PostPosted: Mon Nov 05, 2012 1:21 pm    Post subject: Reply with quote

The Swordfish, rather than its elimination(s), shows the path ...

#1. "basics"

5 Singles : r6c1=1, r2c8=6, r4c8=8=r9c1, r7c2=9

1-fish(2B6) : 2r5c7=2r5c9 :=> -2r5c45
3-fish(2C358) : 2r3c3=2r1c3-2r1c58=XWing[2r3c5=2r3c8-2r9c8=2r9c5] Loop :=> -2r139c4679
2-fish(3R37) : no elimination
1-fish(5B4) : 5r5c1=5r5c2 :=> -5r5c45
1-fish(6B4) : 6r5c2=6r5c3 :=> -6r5c45

#2. Analysis of the B/B-Plot shows that the strongest digits are 2 and 6. Furthermore, they are weakly coupled in r9c5 ...

Fortunately, r9c5=2->contradiction, while r9c8=2->solution, using only singles.

Correspondingly, a chain[15] not requiring the Swordfish may be written as :

Code:
+---------------------+---------------------------+-----------------------+
| 357   13457  12347  | 124578    2457     6      | 9       237    12378  |
| 57    1457   9      | 124578    3        12457  | 1258    6      1278   |
| 6     8      127(3) | 12579     257      12579  | 125(3)  27(3)  4      |
+---------------------+---------------------------+-----------------------+
| 379   347    347    | 2479      1        23479  | 6       8      5      |
| 3579  34567  3467   | 479       47       8      | 4(23)   1      (239)  |
| 1     2      8      | -9(56-4)  (456)    39(45) | 7       (349)  (39)   |
+---------------------+---------------------------+-----------------------+
| 4     9      17(3)  | 17(2)     8        17(2)  | 1(23)   5      6      |
| 2     1367   1367   | 17(456)   9        17(45) | 1348    (347)  1378   |
| 8     167    5      | 3         7-2(46)  127(4) | (124)   2479   (1279) |
+---------------------+---------------------------+-----------------------+
15 Truths = {3R3 2R5 456R6 23R7 5R8 8N8 9N79 39B6 46B8}
22 Links = {24r9 2c7 3c378 4c68 5c6 6c5 9c9 5n9 6n4589 8n46 9n5 2b8 17b9}
3 Eliminations --> [r6c4<>49 : not required], r9c5<>2

or

6r9c5=6r8c4
      5r8c4=5r8c6
4r9c5=4r8c4=4r8c6=4r9c6----------------------------------------------------------------------AAHS(456)B8
2r9c7=============4r9c7=1r9c7
      6r6c4===================6r6c5
            5r6c6=============5r6c5=5r6c4
                  4r6c6=======4r6c5=4r6c4=4r6c8----------------------------------------------AAHS(456)R6
                                          9r6c8=9r56c9
2r9c9===================1r9c9===================9r9c9==7r9c9
                                          4r8c8========7r8c8=3r8c8
                                                             3r7c7=3r7c3
                                                             3r3c8=3r3c3=3r3c7---------------FXW(3R37)
                                                             3r6c8=======3r5c7=3r56c9
                                          9r6c8================================9r56c9--------HP(39)r56c9
                                                                               2r5c9==2r5c7
2r7c46================================================================================2r7c7
 
=> 4r9c5=6r9c5=2r9c79=2r7c46 :=> -2r9c5

If the Swordfish isn't done first, what remains of it then leads to : 2-fish(2r13c35) :=> r9c8=2; Singles to the end


Alternatively, for example, but after some hard work :

#2. Chain[3] : 4r5c7=(4-9)r6c8=(9-2)r9c8=2r7c7 :=> r5c9=2; 1-fish(9B6) :=> -9r646
#3. Chain[8] : Kraken (347)r8c8 => 3r3c7=3r7c7=4r5c7 :=> -3r5c7; 6 Singles
Code:
+----------------------+-----------------------+---------------------+
| 357   13457   12347  | 14578   2457    6     | 9      237     1378 |
| 57    1457    9      | 124578  3       12457 | 1258   6       178  |
| 6     8       127(3) | 1579    257     1579  | 15(3)  27(3)   4    |
+----------------------+-----------------------+---------------------+
| 379   347     347    | 2479    1       23479 | 6      8       5    |
| 3579  34567   3467   | 479     47      8     | -3(4)  1       2    |
| 1     2       8      | 456     456     345   | 7      3(49)   39   |
+----------------------+-----------------------+---------------------+
| 4     9       1(37)  | 127     8       127   | 12(3)  5       6    |
| 2     136(7)  136(7) | 14567   9       1457  | 1348   (347)   1378 |
| 8     1(67)   5      | 3       47(26)  147   | 14     47(29)  179  |
+----------------------+-----------------------+---------------------+
8 Truths = {2R9 3R37 6R9 9C8 8N8 4B6 7B7}
11 Links = {7r8 3c378 4c8 5n7 6n8 7n3 9n258}
1 Elimination --> r5c7<>3

or

3r8c8-3r3c8=*XWing[3r3c7=*3r3c3-3r7c3=3r7c7]
||
4r3c8-4r6c8=4r5c7
||
7r8c8-7r8c23=*[3r7c7=(3-7)r7c3=*(7-6)r9c2=(6-2)r9c5=(2-9)r9c8=(9-4)r6c8=4r5c7]

#4. 2-fish(1R3C2) : 1r3c4=1r3c3-1r12c2=1r8c2 :=> -1r8c4
#5. Loop[3] : 2r2c6=(2-5)r2c7=5r3c7-(5=2)r3c5 :=> -8r2c7,-5r3c4,-2r1c5; 1-fish and Locked Subsets to the end.
Back to top
View user's profile Send private message
ffred



Joined: 29 Oct 2012
Posts: 19
Location: Kent, Egland

PostPosted: Tue Nov 06, 2012 8:51 pm    Post subject: Reply with quote

JC, as I said in another post, that's seriously clever.

I'm going to work through your solutions, though they're at or beyond my limit of understanding. Anyway, thanks!
Back to top
View user's profile Send private message
Display posts from previous:   
Post new topic   Reply to topic    dailysudoku.com Forum Index -> Other puzzles All times are GMT
Page 1 of 1

 
Jump to:  
You cannot post new topics in this forum
You cannot reply to topics in this forum
You cannot edit your posts in this forum
You cannot delete your posts in this forum
You cannot vote in polls in this forum


Powered by phpBB © 2001, 2005 phpBB Group